The Busy Coder’s Gu

Android

Development

The Busy Coder's Guide to Android
Development

by Mark L. Murphy

CoMMONSWARE

The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008-201 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or
business use. For more information, contact direct@commonsware.com.

Printing History:
Mar 2011:Version 3.6 ISBN: 978-0-9816780-0-9

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages
resulting from the use of the information contained herein.

Table of Contents

Welcome to the Warescription!.coueeeiiiiinnnieiiiniinnnecciniinnneeen. xxiii
g 3 £ L ROt XXV
Welcome to the BoOK!.ccoceeiiiiiiniriiieinteeetceeeeee e XXV
WaAreSCIIPLION. «..eeiiiiieiiieeiee ettt ettt ettt et e st bee s e s meeseneeas XXV
BOOK BUg BOUNLY. ..oeiuiiiiiiiieieiecnceetete ettt XXVi
Source Code And ItS LICENSE.ccevueeieeriereeierieseeeesieseeeesteseeseeeeeeens XxXvii
Creative Commons and the Four-to-Free (42F) Guarantee............... xXxviii
AcCKNOWIEdGMENLS.coueriiriiieirirereretetet ettt eas XXix
The Big Picture.cccovviueeeeiiiiiiiiiiiiiiiinneeeecceceeee s ssssssssssseseees 1
What Androids Are Made Of........cccoceeiiiireeieeseceeeeeeee e 3
ACEIVITIES. 1eeneiiiiiiiteetee ettt ettt et ettt et e st e s b e et e e eaees 3
SIVICES. .uutreieeciiieeecttee ettt e e cre e e e tee e e rtee e e taeeesstae e s ssaeeesnsaseeansseeennseaenn 4
CoNtent PrOVIAEIS. c...covicevieerierieriereereere et eare e eee v erneenneenees 4
INEEIIES. weeiieiiiiiiiiee ettt ettt et e e s st e e s s tae e s e ba e e s saraae s 4

Stuff At Your DiSposal.ccceceeieiriinienieininerieieteteesese et 5
SEOTAGE. .ttt ettt ettt ettt et b et e n 5
INEEWOTK. <.eereiiciieeeieeee ettt ettt e st sa et s s e aeeseenean 5
MUIEMEIA. ceviveeiieieieeeeeeee ettt s nees 5

G ettt sttt ae 5

PRONIE SEIVICES. .o eeeeeeseeeeeeeeseasseeeeeeeseaanaee 6

The Big Picture...Of This BOOK.......cccoeceveinreniinecnieecereneeeeeeeeene 6
HoW To Get Started.ccoevveeeeeemnneneieiiiiiiiiinnnnnneseeeeeeeeeeesssssssssssssssssssssss 7
SEEP H1: JAVA. ceeeitiiieitetete ettt 7
Install the JDK. ...covioiiiieeieeeeeeeceeee et ereens 7

|34 B = DRSS 8

Step #2: Install the Android SDK.ccooeeiriiereneniereneeeeeeeee e 9
Install the Base TOOIS.......cccooiveeriirerieieeeeeeee e 9

Install the SDKs and Add-Omns........ccccecverierereenieneneeieeneeeeeeneeeeenes 9

Step #3: Install the ADT for Eclipse.ccceeveevieviereneeieneeeeeeeseeeeeenen 13
Step #4: Install Apache Ant.cccceievieririiiiinireceeeee e 15
Step #5: Set Up the EMUlator.cccooivenieiiininineeeeeeeeeeeenee 16
Step #6: Set Up the Device.coeeeveuenrenereenneneereeneeeneeneeeneeesnenens 23
WINAOWS. 1.ttt ettt ettt e eeveeeteeebeeereereeereeeseeneeseenseenseenneenns 24

OS X anNd LINUX..ceveeiereeeerienieeesteseeeesestesseeeessessesseessessessesssessessesseens 25

Your First Android Project.eeeiieiiiiiiiiiiiiiiiiinineeneeececeennnnnnnneninnnnen. 27
Step #1: Create the New Project.......ccecveverieiecieneeeeieseseeeeceseeeeee e 27
ECIIPSE. ettt 27
CommaANd LiNE.....covirieierierieierere ettt enaeneens 31

Step #2: Build, Install, and Run the Application in Your Emulator or

DIEVICE. ..ttt ettt sttt et 32
ECHIPSE. ittt sttt et sae e s 32
Command LiNe. c.....covueveririienenerieeneetee sttt sttt 33

Examining Your First Project........cccccceviiiiiiiiinnnnnmmmnnniiiiiiiiciiiininnnnnnnnnn. 37

Project SEIUCEUTE. ...cocueiiiiiieiiecetetetetet ettt sttt st sttt 37
ROOt CONLENLS. ..eouiiiiiiieetieteete ettt ettt st ettt e 37
The Sweat Off YOUT BIOW.cocuiviiiieieiececeeeeeseeterieee e 38

And Now, The Rest of the Story.cccecvvevenenennineneseeeeeeene 39

What You Get Out Of Tt...ocovieerieericiieereeereeeecereeerecere e 40

Inside YOUTr ManifeSt.ccueeeieieeeeiieeiieeiieeeeeeeereeereeereeereesreesre e e eveeseas 40

In The Beginning, There Was the Root, And It Was Good............... 41

An Application For Your Application..........ceccevererreerienereeseenennennes 42

A Bit About Eclipse.ccccoiiiiiiiiiiiiiiiinneeieciciiinninccnneeeeeceeeeeeen 45
What the ADT GIVES YOU...cceeieieriirieeieierieceetesteseeeeseeseeeseesessesseesennens 45
Coping With EClIPSe. ..ccveieuieiriiriiieteecseee ettt 46
How to Import a Non-Eclipse Project.ccccocevvevevevircenenenenencnnen. 46

How to Get To DDMS. ...ttt 51

How to Create an EmMulator.........ccccoevivieveninienienenceteeneeeeeseeen 53

How to Run a Project........cocoeiiiiininiiniiiiienecteeeeeteeeceeeeen 54

How Not to Run Your Project.cocceeveeiiniennenninieneneeeeieeiene 55
Alternative IDES......ccuccuiiiieieieieeieiees ettt s naas 55
More 0N the TOOIS. ..cccueeciiecieeiieieeeeee e e e 56
IDEs...ANd This BOOK. ..cc.eetriiiriiniiiieieniercesieesectese et 57
Enhancing Your First Project...........ccccevvvvnueeiiiiiinnneeciinniinneecenninnnnneee. 59
Supporting Multiple SCreens.cccecereeierieneneniieneneeterese et 59
SPeCIfying VErSIONS.ccceiruiruerieieieiniesienieieeeese ettt st saens 60
Rewriting Your First Project.ccccceuvvvuvurinnnnnniiiiiiiiiiiiiiniiineneneneennnnnnn. 65
THE ACHIVITY . cutirtieiieieiereete ettt sttt s be st esbe s st e naesbesanens 65
Dissecting the ACHIVILY.coceeerierieririnirereieee ettt 66
Building and Running the ACtivity.cccceveverienrienenenenneeeneseeeeeaens 68
About the Remaining Examples.........cocoeevievirininenenieniiineneneseeseeenene 69
Using XML-Based Layouts.cccoovvvumuumeeeeeeeiiiiiiiiiiiiiinnnnnneeeeeeceeeeennns 71
What Is an XML-Based Layout?.......c..cccceeveniennenenenenieeeeneneseeeeeenenne 71
Why Use XML-Based Layouts?........cccecevierienereenienieneeeeseseeeeseeseeeeeeens 72

OK, So What Does It Look Like?........ccccccevirerinenienninenenerieeeeeeseeene 73

What's With the @ Signs?.ccocevevieiiriinineneeereeeeeeese et 74
And We Attach These to the Java.. HOW?.cccoeevriieiiiiiiiccieceeereee, 74
The Rest of the StOry.cccevieiiiiieeeeeceeteee e 75
Employing Basic Widgets........ccccoovuueiiiiiiinneiiiiiiinnnecinnninnneeecnnnnneeeens 79
Assigning Labels.coeeiiviiriiniiiiieieeeeeeeeeee e 79
Button, Button, Who's Got the BUtton?.cccoeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 8o
Fleeting IMages.ccceeuevirieininieieineeiesteteeete ettt 81
Fields of Green. Or Other Colors.cccceecierierieieieceeieiereeeeee e 83
Just Another Box to ChecK.......ccooueiririnenieniiiiinereseeeeeeee e 85
Turn the Radio Up. c.ceeviriiiiieiiieeteeeetete et 88
[t's QUILE @ VIBW. .e.evieiiieeiieiecieetteieeie et et e steeste e e s re e se e se e seessa e seessnennnas 90
Padding. ...c.coueeuiiiieieteereee ettt 90
Other Useful Properties.ccecevevereerienirirenenienieesesesieseeseeseenesaens 90
Useful Methods.......ccuecieciieiieeeeeeesteeeeeees e o1
COLOTS. ettt ettt ettt et e e st st et et e sae e e e aesae e e eneens 01
Working with CONtainers........ccooveeeiiiiiinneeiiniiinieeciiniieecccescneeeceennns 93
Thinking LINAT]Y. ..cceeerieriiririeierieeteeeseete et 94
Concepts and Properties.ccceceeverererienierinenenenieteeeeseseeseeeenens 94
EXQMIPIE. .ottt 97
The Box Model.coiriniiieiiiiiieeeeeeeee et 102

All Things Are Relative.ccccoerevieiinininiererneeeeeeeeesee e 104
Concepts and Properties.cceeeveeeererreerienenenieerieneseeseeseeseseenees 104
EXQMIPLE. ..uviiiiiiieieniteteeseet ettt sttt ettt 107
OVETIAP. 1ottt sttt ettt 109
Tabula Rasa. .cocoverieriiieieiceicteteeeee e 111
Concepts and Properties.c.cocvererievirenenenienieteeseseseeeeeeesaene 12

vi

EXQMIPIE. ..ottt 114

SCIOIWOTK. ...ttt ettt et eesaesae e eneens 15
The Input Method Framework.ccccccvvviiiiiiinnnneneecccciiininniiinnnn. 119
Keyboards, Hard and Soft.cceveririneninniiinineeceneeeeeeeeeene 19
Tailored To YOUr Needs.ccueveeerueerienineinieinieeneeeneeeneeeeeeeeneseenenens 120
Tell Android Where It Can GoO.ccceveereeneerierieseeeeereeseeeseeseeseesenens 124
FItENG TN ettt 127
Jane, Stop This Crazy Thing!.cccecvereneninininneereeneereeeeeee 128
Using Selection Widgets.uuuueeeeeeeeiiiiiiiiiiiiiiinnnnnnnnnreeeeceeeenennnnennn. 131
Adapting to the CircUmStanCes.cceeeeeerierereerienieneeeeneseseeseeseseens 131
Using ArTayAdapLer.coevverierieireneneieteeeeeeseesee e 132

Lists of Naughty and Nice.c.cocevevirireninenieiieeneneeeeeeeeeee e 133
Selection MOdes.coeeeerieriinerieieseeee ettt 135

SPIN CONLIOL ..ttt aas 137
Grid Your Lions (Or Something Like That...).....cccceceetrerrerinenirecneenenns 141
Fields: Now With 35% Less Typingl......ccccecevrenenenninieneneneeeeecenenn 145
Galleries, Give Or Take The ATt. ..o eeeeeeeeeeeeeeeeeaes 149
Getting Fancy With Lists.cccoeviiiiiiiiiiniineeiiiciiiiiiiiniinccneeeeeeeees 151
Getting To First Base.ccociiiiieiiiiiiiiiieeeeeeteeee e 151

A Dynamic Presentation........ccoceeierieeiiiniiennienieneeeie ettt 154
Inflating ROWS OUISEIVES.ccceveruiriiieiiinierieneeereeee e 156

A Sidebar About Inflation.c.ccceeveevierieieeieeiereceeeeee e 156

And Now, Back To Our StOry.ccecevevievirenenenieteceereseseeeeeeeeees 158

Better. Stronger. Faster.coccoviiiiriinniiiieieceece e 159
USING CONVETEVIEW...c.ueiiiiiiiiiieiieieeiteiteiee ettt e e eveeas 159

Using the Holder Pattern...........oceverirnienenenienenencesieneseeeenieseene 161
INteractive ROWS.......uviieiiiiiieiee ettt et e e e rae e e 164

vii

Still More Widgets and Containers.coovuveeeiiiiinneeeeiniinnneeecninnnnees 171

Pick and CRhOOSE.c..ocvieeieieceeceeeeeccee et eve e ene e ens 171
Time Keeps Flowing Like @ River......c..cccoceveiiineneneneiineeeeecen 176
Seeking ReSOIULION.ccceiruiriiieieieieceeeee et 178
Putting It On My Tab.....coccoiiviinirieieeeeeeeetee s 179
THeE PIECES.....ioiiiiieieieeeeeeet ettt 180
Wiring It Together. ..o 181
Adding Them Up. oottt 184
Flipping Them Off.cocoiiiiieeeer et 188
Getting In Somebody's Drawer.cccooererirnieneniennieneneneeseseeeeeee 193
Other Good Stuff.......c.coueeieieiieeeeeseeeee et 197
Embedding the WebKit BrOWSeT...........ccceeriiineeiiiiiinneeeiinniinneeccnnnn. 199
A Browser, Writ Small.ccccveiiinieieiiieceeeeeseeee e 199
L0ading It UP. c.coueruiieirinieeietete ettt 202
Navigating the Waters.ccccceeevierierenienieneneetesieseseesee e sesstesaesaesaeens 203
Entertaining the CHent.cocoveveriniieninneeneeeeeeeeeeeeeaeen 204
Settings, Preferences, and Options (Oh, My!).cccoceviveiinieininieneennn. 206
APPLYINg MEeNnUS. ...ccoovvivmuiiiiiiiiiiiiiiiniireecennereccsssneee s ssaseeesseens 209
FIavors Of MENU.ccueeieriereieieiesecteieseeeeie et ste e e sae e esaessassesneens 209
MeNUS Of OPLIONS.eeiiriereirieiirertetere st tete et esee e e e e seessesseeeessesseens 210
Menus N CONEEXL. c..ccveruiiiieririieieiierteterceeet ettt resre e eanens 212
Taking @ Peek.......coevuirieieiiieeete e 213
Yet More INflation.ceeeeeieriieieiierieseceecieseeee e sae e seeens 218
Menu XML SETUCEUTE.veieiieiiieriieeieereeeeie et e e e seeesreesveesanesnns 219
Menu Options and XML.ccccccevirirrienenenrienieneneeteneseseesieseseens 219
Inflating the MenU.ccccocueriririiininieteeeeeceeee et 221

In the Land of Menus and Honey..........cocoeevievireninenienncnenenenieeeeen 223

viii

Showing Pop-Up Messages.ccouueeiiiiinuneeiiiiiinnneecinninnnneecennnnneeees 225

RAISING TOASES. ..veevieeieriieieeiieiteeeteite ettt sttt s 225
ALETt! ALETEL ettt 226
Checking Them OUL.cocuereririerienenteieseeeetesee et sesee e saeeaeens 227
Handling Activity Lifecycle Events.ccoovueiiiiiinnneeiiiniinnnecceniinnnnee 231
Schroedinger's ACHIVILY.cocererirrierienerteierenee ettt 231
Life, Death, and Your ACIVILY.ccceceverenienierininenienieeeesesesee e 232
onCreate() and ONDESLIOY(). c.coveerierereeeririeriereirieiereeereesseeeseessens 232
onStart(), onRestart(), and onStop(). ...c.ceceereeerrererreerierenreereeereenenes 233
onPause() and onReSUME().cceveeeviveeerieeiiiceienieeeeeeeeeeeete e 234

The Grace of StAte.ccceeeevieriireeieereeee et ees 234
Handling Rotation.cccoiviiiiiiiiiinnnneiteccciiiinnnnieneeeeececeeesseeees 237
A Philosophy of DeStruction.........ccceeceeeverererrieneneerienieneseesieseeseesseneens 237

It's All The Same, Just Different.cccoeeeeevreecieecreeniesieeieeeeeereecreeiens 238
Picking and Viewing a CONtact.........ccceeeervereerenerrerenrenenueenreeneenennene 240

Saving Your State.ccoceeveeeieiieiieeeeeeeeeeee et 242

Now With More Savings!.ccccocerviereninniinineneeieneeeesteneese et seeeens 245

| D) D 340) =1 (o] s FA U SR 247
...But Google Does Not Recommend This.ccccevererenenrccnennenne. 250
FOrcing the ISSUE.cceciiiriiniinieietnereeete sttt 251
Making Sense of it All.......coccoeveiiiiirinieieeeeee e 253
Dealing with Threads..........cccoevvinmreerieiiiiiiiiiiiiiiieeeeeeececcnnees 255
The Main Application Thread.cccoceeveevieninieriieneneeeeeeeeeee 255
Making Progress with ProgressBars.coccoveevenieninnienenienniencneneneen 257
Getting Through the Handlers.cccoveeneeneenninccnncrcneeneens 258
IMESSAZES. .eeeuuereureeriteniteette st eite st et et e st et e st st e e s e senee s 258
RUNNADIES. ...ttt 262

Where, Oh Where Has My Ul Thread Gone?............ccccceereeerecrencnnene. 262

ASYNCINg FEEliNG......ccevveviiiririiriiieietreeeetteese et 262
The TREOTY...cuiiiiie ettt 263
AsyncTask, Generics, and Varargs.........cocceceeereneerervesienenieneeneenenens 264
The Stages of ASyncTask.ccceoveviririnenenirinirereecseseeeees 264
A Sample Task. .c.eeeeviereriiierireeeeeree e 265

Threads and ROtAtION.ccveeevieerieerieireereeere et et et eereeereeereesveenees 270
Manual Activity ASSOCIAtION. .e.eeueiveerrerierienienierieneneestene e 271
FIOW Of EVENTS. ..ooiiiiiiciiciieteee ettt ettt et sae e s 274
WHhy This WOTKS......ccciiririeierieeieteeneeteesese st 275

AN NOW, THE CaVOALS. ...eeeeeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeaeeeeneeeeeas 276

Creating Intent Filters.ccccovvuiiiiiiinnniiiiiiiinniiiiinninnnecinnneccenn. 277

What's YOUT INTENE?. ..cueiieiiiiiiieeieceecreeeeeie ettt ste et e e erean 278
Pieces Of INTENLS.occueecreeiietieie ettt ettt ettt et eveeae e eas 278
Intent ROULING. ..cocverviiriiiiiiiiieieteteeeet e 279

Stating Your INtent(100S).......cecerteuertrenirienirienirieceieesieceie e 280

INQITOW RECEIVETS.eiiiiiiiiieieieteeee ettt ettt ettt e 282

The Pause Caveat.......ccceeeeceerieseeierienieeeeiesreseeeee e ssessesaeseesssessessesseeseas 283

Launching Activities and Sub-Activities.cccccccevriiiiiiiiiinnnneeneeeeeees 285

Peers and SUDS.ccceciiriirieeececee e 286

I L 1 0 o J TSRS SR 286
Make an INEENL.c.oeuiruirieiiiieieeeete ettt 286
Make the Call.......cccieiieiiieeeceeeeeee e s 287

Tabbed Browsing, Sort Of.cccooiririniniinineneereeeeeee e 291

Working with Resources.ccceiiiiiiiiiiiiiiiininnneeeeeccicennnne, 297

The ReSource LINEUP.ccccecuererierieneniecieneseeteese et eeeneens 297

SEENG THEOTY. ettt st 208

Plain SEEINGS. .eovevveieirenieieie ettt sttt 298

String FOrmats.covveeierrieiiieeeieeeeeeeeee et 299
SEYLEA TEXL. .ttt sttt 300
Styled Text and FOrmats.cceceeeeriererienieneneeteseseeeesteseeseeeeeens 300
GOt the PICUTE?.eeeeeeieiecieceeteeteettetete ettt et esaesae e e ae e 304
XML: The ReSource Way.ccceceeererenieninineneneneenteesesiesieseeteeesesaens 306
Miscellaneous Values.ccoceeeeierieneniesieneneeeeeseeeee e 309
DIMENSIONS. ..tteiitieiteeite ettt ettt et e et st e et e ee e sbeesaeas 309
Q0] 1o - J TSSO 310
ATTAYS. oeevteiteetente ettt et e et e e et e st e st e et e sate st e et e eatesatesateeabeeatesaeeeaee 31
Different Strokes for Different Folks.ccoceevverviinienienieneecieceeeeen 312
RTL Languages: Going Both Ways.cccccevirierienininnieneneeeeeseseneens 317
Defining and Using Styles..........cccccvvvuueiiiiniinneciiiiiinnniecinniinneeccennn. 319
Styles: DIY DRY. .ottt sttt sttt 319
Elements of Style.cccoiviririeniiiiiiieete et 321
Where to APpPly @ StYLe. .ovevviiiiiireeeeeeeeeeeee e 322
The Available Attributes.cceeeeeiereeeeieiececeeee e 322
Inheriting @ Style. ..o 323
The Possible Values........cccoceevieviininiiiiineeieeseceeeseeee e 324
Themes: Would a Style By Any Other Name.cccccevvvieieneneeienene. 325
Handling Multiple Screen Sizes.cccccovvueeiiiiiineeiiniiiineecinniinneecenn. 327
Taking the Default........coceecieviriniiieieeeeeeee e 328
WHOIE iN ONe.....eiieiiiieeeeeeetetee et enes 329
Don't Think About Positions, Think About Rules............ccc......... 330
Consider Physical Dimensions.cocceevevieerenenienienenenienenieeeenes 331
Avoid "Real" Pixels. ...ccccevirieieiieieeeeseete et 331
Choose Scalable Drawables.cccocerinerienieneneeereseeeeseeeeen 332

xi

Tailor Made, Just For You (And You, And You, And...)....cccceeverreunensn. 332

<SUPPOTLS-SCIEIISS . c..uervenenrereeeretereseseteseeeseneeseseesenesseseesenesseseeseneene 333
Resources and Resource Sets........cceevveevierieeeeesieesienieeeeereeresneenns 334
FINAIiNg YOUT SiZE. c.vovuiiiiiirieieierieseeteeseetee ettt 335
Ain't Nothing Like the Real Thing.cccecvvivineneneininenenieieeeenens 336
Density Differs.ccceieerieririrerienietereeeseseseree st ees 336
Adjusting the Density.cccoceceeirinerenienininesesenereeeeesesee e 337
Ruthlessly Exploiting the Situation.cocceceevecteiererenenieeresenereeeens 338
Replace Menus with BUttons..........ccceceverenienienineneneneneeeceeenes 339
Replace Tabs with a Simple ACtIVItY.....cceceeeeererreereereneeeeeseeenes 339
Consolidate Multiple ACtIVIties.cccecerveerierererseenieneneerieneseneens 340
EXample: EUZAYOU. ..coccoviririeiereceeeereetee ettt 340
The FITSt CUL.ccuveruiiieiiieeteiesiereetestee ettt sttt st 341
Fixing the FONLS.ccvviririenieieircneeeeeeee sttt 347
Fixing the ICOMS.cocviviiriiiiiirineete et 350
Using the Space.coooeiieviiiireeeee e 350
What If It Is Not @ BIOWSET?.ooueviiiiriieinieieneneeteseeeeeesie e 353
Introducing the Honeycomb ULuuuuuuueeeieiiiiiiiiiiiiiinininnnnnneenes 357
Why HONeyComDY?.cc.ooiiieieieiereeeetereee ettt seeas 357
What the USEr SEes.c.cceeiiviireieiiierieeeeiesesee et sae st seesneeneas 358
The Holographic Theme.cccooevienirininenienieireneeeeeeesesee e 363
Dealing with the Rest of the Devices.ccccevererenierirceneneneieieeeenes 364
Using the Action Bar.........coouiiiiiiiiniiiiiniiineciinnineecnnneeccnnnnne 367
Enabling the Action Bar.ccccoevevineiiiinineneeceeeesee e 367
Promoting Menu Items to the Action Bar.......cc.cocooevevnicnencnenncnene. 368
Responding to the LOZO.cccceeririnienieninineneeteeneeeeeeteeeeee e 369
Adding Custom Views to the Action Bar.......c.cccovvevvirvienenenninnencnnenne. 370

xii

Defining the Layout.cocccuevireririnieieieeeereeeteesesese et 370

Putting the Layout in the "Menu".ccccoevrininininnnirenceeee, 372
Getting Control of User INPUt.ccccevveniririieninenteieneneeeeeeseeen 373
Don't Forget the Phones!. ..o 375
Fragments.coooeeeeeiiiiiimmmniiiieeiimiiinieeinnieinreeeeemsseesesssaees 377
Introducing Fragments.........coccecereeierieneniesieneneeteeeseeet et 377
The Problem.cciouieieiieceeeeeteeee ettt 378
The Fragments SOIUtiON.cccccceeverienienininiriereeeceeseeeeeceaees 378
The Android Compatibility Library.......cccceveeverenenenncncneneeenne 380
Creating Fragment Classes.ccceceereruenienininenenienieteesesie et 381
General Fragments.........coccvevevrenenenienieineneneeeeeeeieseesee e 381
LiStFTag@ment. ...c.c.coecuieiiiiiiieeniieeeeeeee ettt ettt 383
Other Fragment Base Classes........cccocevteirerenenienenienenienieneeesenienees 388
Fragments, Layouts, Activities, and Multiple Screen Sizes................... 389
EUZYOU. ittt et et 390
DetailSACHIVILY. cueeveriererieierentereseee ettt nes 395
Fragments and Configuration Changes........c..ccccoevererenenenenencnennene. 396
Designing for Fragments........c..coceeevievirenenenienineneneneeeeeesesie e 397
Handling Platform Changes.cccccccceviiiiiiiiinnnnneeeeeccciiinnnnnniiinnne, 399
Things That Make You Go "Boom".cccccevevineneninienenenieiceeeeeneene 399
View Hierarchy.ccocooeviiiiininieeeieeeeeceese e 400
Changing ReSOUTICES.ccceciviruirienieieieirenetete et 400
Handling API Changes.cccoceverenirininenienieteceeseseetetee e 401
Minimum, Maximum, Target, and Build Versions.c.cccceceeunuc. 401
Detecting the VErSion.cccceeeeerieneninnieneneneesteneseeeeseeseseeeens 404
Wrapping the APLcoooiiieeeeteeee et 404
Patterns for HONeycomb..........cccoeeieiirinininieierineeeeceesie e 407

xiii

The ACtion Bar. ...cc.occiciieiieieeeeeeteeeeteete ettt eve s 407

Writing Tablet-Only APpPS. ...coeeveieirinenieieieereneeeeesese e 409
Accessing Files......ccooiinineeeiiiiiiiiiiiiiiiineenecccccccn e 413
You And The Horse You Rode In On. ...cc.cceeivineninieninineneneieeeceenes 413
Readin' ' WIItIN'.coveiieicieececteeseeee ettt 417
External Storage: Giant Economy-Size Space.ccccoceevuevenerveenenennen. 421
WHheTe t0 WTILE. ...oiiuviiicieetecteetee ettt 422

WHEN t0 WIILE. ...cviieiicieeiececeeeee et 422
StrictMode: Avoiding Janky Code.coocevervirnienineniiereneneeieneseeene 423
Setting up Strict Mode........coieieviererieienereeterese et 424

Seeing It IN ACHION. c..ceiiiiiiriiieeteeetee ettt 424
Development Only, Please!.ccccooverievninininieneieeneneeeeeen 425
Conditionally Being Strict.cccoceererenenneneneneeeeenereeeeeeene 425

Linux Filesystems: You Sync, You Win......ccccecevevievinineneneneenencnenene. 428
Using Preferences.cccoovvuumeeeeeeiiiiiiiiiniiiiiininnnneeecccccceennsesccsnnnns 431
Getting What YOU Want.cc.coevevrineninieniecnenenesteteeeesie et 431
Stating Your Preference.cocoeevevreninenienininenenesteeseseseeeeeesaens 432
Introducing PreferenCeACtiVILY.cccevererererierteierenerieteeeesesee e 433
Letting Users Have Their Say.ccccevervirvieneniennienenenteieneeeeeeseseeen 434
Adding a Wee Bit O StIUCLUTE.cc.evveeieriereeieierieeeectesiesee et see e seeeens 439
The Kind Of Pop-Ups You Like.......c.cccoverrierineniecienineeereeeeeneeees 442
Preferences via Fragments.cccceceeeruenienieineneneniesteeeesesiesee e 446
The Honeycomb Way.ccccoirerenieniiininieneeeeeneseseeeeee e 447
Adding Backwards Compatibility.ccccceververenenieninenenenieeecnnn 452
Managing and Accessing Local Databases..............uueeeeeeiiiiiiniiiiinnnnnee. 455
A Quick SQLItE PIIMET. ...cveeevieriereerierieereeereerecereeereeereereeereeeneeereeneenns 457
Start at the Beginning.cocceevevirenenenienieietneseseeeeeeseseeeeeeeeaens 457

xiv

Setting the Table.ccccoiiiiriniiee et 461

MaAKIN' DAta.....cceeeeieerieeieeieeieeeeeeeeee e seeseeeteeeeesseesreessseeseesraesseesssensnas 462
What Goes Around, Comes ATOUN.coooeevvuveeeeereeeisieeeeeeeeeeeeeeeesreenns 463
RAW QUETIES. ...eicevieeeieeeiiieieeeieeectteestreerete e te e steestaestaesnbaeevaesnseeennns 463
Regular QUETIES.coeeuerueiieieieierieieteee ettt 464

USING CUTSOTS. ...viiiiiiiiiiiiiiiiicice et 465
Custom CUTrSOTAAAPLETS.cuerueruerierieieeeerierienieteteesse e seesee e eaesaenes 466
Making Your OWn CUTSOTS.cecerereerienieneenienieeeenienseseseesseseseens 467

Flash: Sounds Faster Than It IS.cccceevvevievienieneereeceeseeeeeeeeeesiens 467
Data, Data, EverywWhere.cocoocievininieiieereeteeseeeeee e 468
Leveraging Java Libraries.........cccccccvviiiiiiinmmmnnnneeeiciciiiinnnnnninnnnnnnne. 471
ANLES AN JATS. c.viiiieiieiieieeeece et re et be et re e e e e re e reenees 471
The Outer LIMILS. ...ccecuieeeieiecieeieieseee et este s e e e ese e e e eaessessessesaessessnens 472
Following the SCript.ccocivererieiiiirineeeeeeereeeeeeee e 473
Reviewing the SCript. ...cc.ccevieinererieriieeeee e 478
Communicating via the Internet.............cccccvvvnneiiiiiinnnneeeiiniinnnneeenn 481
REST and Relaxation.ccceceeciieriiecieecieecieereecteeieeveeveeteesveeaeeseeseens 481
HTTP Operations via Apache HttpClient..........ccceeveeverercerceerienennne 482
Parsing ReSPOMNSes.......coceeeivieriiiiiiiinienecrececeee e 484

Stuff TO CONSIAET. ...ccuveereiierieieieeeetee ettt 486
AndroidHttpCHENt. ..c.eviuiririiieieieeereseee et 487
Leveraging Internet-Aware Android Components.........cc.ceceerurrerueuencns 488
Downloading Files.cocceviivieriniiniiniinieieeneeeeeeseeteee e 488
Continuing Our Escape From Janky Code.ccccoverirviinenenceinienennne 500
Services: The Theory. ...t cseaneeeeeees 503
WY SEIVICES?. ..ottt ettt 503
Setting UpP @ SEIVICE. ..cccuerviiriiiriieiieieeieeieeeee ettt et 504

Xv

The Service Class......ccueeecierieeeeierierereestese et se s ste e see e enees 504

Lifecycle Methods.cccoeeeevienienenieieneeeeeseeeeee e 505
Manifest ENEIY. ...occooeeiriienineeieereeeese sttt 505
Communicating To SeIVICES.....c..ccoveereerreerienienieeeneeneeeeeere et 506
Sending Commands with startService().c.ceceveverrererrecerierereeannns 506
Binding with bindService().cocevurvererreerieerieerieeieeseereeereseereeenens 508
Communicating From Services.coecerienirnienieinienieneeneeneeneeneens 509
Callback/Listener ODbJECtS.ccoeverrierererienienerienieneseeseeseeseeeeene 509
Broadcast INtENLS.cceverierierenieteiesee et 510
Pending ReSults.coeveirininieieieee e 511
IMESSEIIZETc.ueerueeeueeeiienie st et st st ettt sate st et et saeesee et e sareeaeeeaes 511
NOUIICALIONS. 1..veeveereiieeieiesieee et e rte e etesre e e e seessesseeeesbessesseensasaessnans 512
Basic Service Patterns.ccccciviiiienniiiiiiiinneiiiiiiiimeeisniiesenniesieesnasssaes 513
The DOWNIOAET.ccueeeeeieieiieieieeeeteeee ettt sae e 513
The DeSIGN...c.eiuiieieiriinieieetete ettt 514
The Service Implementation........c.cceccevererierienerieesieneneeeeee e 514
USING the ServiCe.......covivuirienieieirereneieece ettt 517
The MUSIC Player.cocieviririeienieteieseeteteeste ettt 518
The DESIGN. ..coueruiriirieieieireree ettt ettt 519
The Service Implementation..........cecceevueriererenerenieneeneneneseseeeeenne 519
Using the Service........coovevevinininieeeceeeeenereeeee e 521
The Web Service Interface.cceceeeeeevieneniensieneneeeeeseeeee e 522
The DeSIGN. .c.veruiieieieiieiereetete ettt 523
The Rotation Challenge.cccoceeirerienienninineeeeeeeeeeeene 523
The Service Implementation.ccceceecerererierieneereneneneniesseeeneeees 524
USING the SEIVICe.....cocuiviriieieierieeteereete et 529

XVi

Alerting Users Via Notifications...........eeeeeeiiiiiiiiiiiiiinniinnneeecceecenennnnn. 537

Notification CoONfigUIation........coceeveceeererenienierieeeeseseneeteeee e 537
Hardware NotifiCations.cceeeeeeriererersierieeeeriesieseeeesees e eee e 538

[COMIS. ettt ettt e e e 539
Notifications iN ACHION.cceeriereeeeierere ettt e e seeeneas 540
Staying in the Foreground.ccccoceveveniniininenenieeireneereeceeeeene 545
FakePlayer, RedUX.cccoueviriririnieieietrereeeeteeeese e 546
Notifications and Honeycomb.ccceenerieiiniininienienirereneeeeeen 548
Requesting and Requiring Permissions..........cccccceevviiiiiiiiiiiiinnnnneenees 553
MoOther, May I7.....cc.ooiieiiieeeteeseeee ettt aene 554
Halt! Who Goes TRere?.coveveiereeeeieieseeeeieseeeeeesee st 555
Enforcing Permissions via the Manifest.c..ccccoevieveneneneninennne 556
Enforcing Permissions Elsewhere.c.cccoveniiiinininincncnncnene. 557

May I See Your DOCUMENtS?.cooeeveerienienienieeeeneeseeesreesie e 557
New Permissions in Old Applications.ccccecevververienirnenienenenieneeennens 558
Permissions: Up Front Or Not At All.......cccoceevienininiinninininieneneee 558
Accessing Location-Based Services.cceeiiiiiiiiiiiiiiiiinninneeeececcnnnnn. 563
Location Providers: They Know Where You're Hiding.ccccccouuece. 564
FInding YOUrself.coooioiinininiiieeenteeseeteerese ettt 564

ON the MOVE. ...cueiiiieieeteeeeteese ettt sttt ettt sae st nee s 566
Are We There Yet? Are We There Yet? Are We There Yet?. 568
Testing... TESHING.ccceiriieiieieereee ettt 569
Mapping with MapView and MapACtivity.ccceeeeiiiiiiiiiiiiinnnnnnnneeeeee 571
Terms, Not Of ENA@AIIMIOIIE. «.eoeiiiieeeeeeeeeeeeeeeeeee e eeeeeeee e e e e eeseeeees 571
PIliNG OMceeciiiiiiieieseeeeee ettt ettt ettt etens 572
The Key To It Al c..oeeeieieieeeeeeee ettt 572
The Bare BONES.ccvevuieeiieiieieeeieeeteeeeeeteeete ettt et eanes 574

xvii

OPHONAl MaPS....coueveriereiereirreieretrreeereereesreesre et seeenes 576

Exercising YOur CONtIol.ccoevieirirenenieieeeeseseteesesieie e 576
/003 1 s VU 577
Q=S 3 <) AU 577

Layers UPOn Layers.cocueeiiieiiiiiieeieeeteete ettt sttt 578
OVETlay ClasSes.ccueeeirerierienieinenierierte ettt ettt 578
Drawing the ItemizedOverlay..........cccoceeeenrernennennenesrecnnnes 578
Handling Screen Taps.......cocveverierieinenenenieneeeeesesie e 580

My, Myself, and MyLocationOverlay..........cccocceeeerecerecerercneneneeneenens 581

RUGZed TEITAIN. ..cveiiuiriiiiiiieiete ettt 582

Maps and Fragments..........ccoceeerirrienenenieneneseeseeseseesee e eeeeseeseeenees 584
Limit Yourself to Android 3.0.cccceeeeievierenieciereneeeseeeeeeneeene 584
Use onCreateView() and onActivityCreated().......coceoereerereererueenenn 585
Host the Fragment in @ MapACtiVIty.......ccoceevererieneerenenenieneeeeenns 586

Handling Telephone Calls.cccceiiiiiiiiiiiiiinnnnneeeceiiiiiinnniniinnn, 589

Report To The Manager.......c.coeeueveeererienienieieinieseseeneeeeseeieseeseeneeesaens 590

You Make the Calll.cceoieieieeeieeceeeeeeee e 590

No, Really, You Make the Calll.........ccocorireriininiiniineeneeeeeeeene 593

03 11 595
Love The One You're With.cccccvevieiirieieneneeeeieseeeevese e 595
Here a Glyph, There a Glyph.cccooeiiiinininiineeeeeeeeeee 599

More Development TOOIS........ccccovviiiiiiiiiiiineeeeeceiiiiiinnnnnieeeeeee 601

Hierarchy Viewer: How Deep Is Your Code?.........ccccecvirineneenencenennne 601

DDMS: Under Android's HOOd.cccceevveeiiirineneniciiinencnceeeecnnee 606
LOGGINEG. vttt ettt et e ettt et e e sttt 608
File Push and Pull.cccooiririeriiieeeeeeeeeeeee e 609
SCreeNShOLS. ..ottt 610

xviii

Location UPdates........ccceveeuerermeneererinienineeerreenreerreeseeeseeeseeeseeseneene 61

Placing Calls and MesSsages.cccceerueruerirenenenienienieenenieseeseeseeneenes 612
Memory Mana@ement.c.ceeveerreereieenneeensieenieenreeseieeeseeesreeseeenane 616
adb: Like DDMS, With More Typing.......cccceceverereneneeneneneneneeneeennenne 617
The Role of Alternative Environments.cccccevviinneeeiiiiinnnneecennnnn. 621
In the Beginning, There Was Java.ccceceeveeienienerieenieneneesieneseeeene 622
AN TE WS OKL ottt 622
Bucking the Trend.cooieiiinininieeeeee e 623
SUPPOTIT, SETUCEUTE. ...conveiiiiiieiieieeteeereeeeeeeste ettt 624
Caveat Developer.cccoueieiririereieresertete ettt 624
HTIMLE. ittt reeaesesaesssesasssesasessensssssenssssssnsssssen 627
Offline APPliCAtionsS.ccverveieiriirieieietreeeree et 627
What Does It MEan?.cccuieiieiieieeieceeeeeeee ettt 627
How Do You Use It?.cccooiiiiiiiiiiiiiiiciciicncrcce 628
WED SEOTQGE.evetiieieieiirtente ettt ettt 634
What Does [t MEaN?.cccceeeeierieeieierieeeeeesieseeeeeesseseesaessessessnens 635
How Do YOu Use [t7. .ottt eeeee s seee e 636
Web SQL Database.cccoveeuieeeiieniecieiesieceeeete st 637
GOoINg To Production..........coeeuevieirinenienieieieereee et 638
TESEITIZ. .eeeveeiteiieriteteet ettt ettt ettt e b et e bt et e b e b e bt ebeebeeas 638
Signing and Distribution.cceceevievienenierienieneeteeseeeeeseseeene 638
UPALeS. ..ttt ettt ettt sae st a e e e ens 639
Issues You May ENCOUNLET.cocveriiiriiiniiiiieieeieeeieeneeeee e 639
Android Device VerSions.........coceverierierienesiienieneneenieniesessessesenns 639
Screen Sizes and Densities.ccceeeeeverereeceesieneeeeseseeeeee e seeeeeas 640
Limited Platform Integration.ccccevevenerienneneneneneeceenenene 640
Performance and Battery.ccocevviererenercieneneneeieseseeeesee e 641

Xix

LOOK @nd Feel.ccuieuieiiciiciieeeceececeeeee ettt e 642

DISEIIDULION. 1uvieevieeriereere et et cre e ereeneeneereeareerneerneerneennes 642
HTMLs and Alternative Android Browsers..........ccceceeevecvereneereeseeneennen. 643
Firefox MODIle.ccuocuieieieiieieee e 643
Opera MoDbile.ccooiiiiiriieieeteeee e 643
Dolphin Browser HD 4.0. c..cccooviiviiriniiienininieseneneeeseseeeeniesene 643
HTML5: The Baseline.cccoceveriririieniinieierieneeeeeeesee e 643
PRONEGAP. «.evviiiiiiiiiiiiiiiiiiiiiiieeieeeiiseeesssssssssssssssesssessssssssssssssssssses 645
WHhat IS PRONEGAP?...c..ciiiiiiriieiiieeteterieseetee ettt 645
What Do YOu Write IN?.....ccoviriiieniieieiereeeeteseeee e 645
What Features Do You Get?.ccoeevieeieeiieieeieeie et 646
What Do Apps Look Like?.ccccevirirenenininineneneeeseseseeeeeeees 647
How Does Distribution WOrKk?........ccccoveeeeireeveeirieeeereceeeeeeveene 647
What About Other Platforms?.ccccevieeevieneeieecieseseeeeseeeeenens 648
USING PhONEGAP.....coiiveerieirieiriereerietteerte et seesnenens 648
INStAllAtioN. ..ecvieieieeecieeeeeee et et 649
Creating and Installing Your Project........cccceceeveevevenenvennencnncnnene 649
PhoneGap/Build.........ccooevieiiiieninieieeeceeeeteeetee e 650
PhoneGap and the Checklist Sample.........ccccoceverievirvinieneneneirrenenes 654
Sticking to the Standards.cccceeveeievenenieniieneneeeeeeeeee 654
Adding PhoneGap APIS. ..c..cceviririnieieirineneeeeeesiesee et 657
Issues You May ENCOUNLET.coooeiriiiriiinieiieeeeeeeeeeeeeeeeee e 660
SECUTILY . ettt ettt ne e 660
Screen Sizes and Densities.cocceerueriererenenienienieinenereeeeeeeene 661
Look and Feel.cccooeiiiiiiininiceneneccteeneeteeeeeee e 662
For More INformation.ccceeceecierereesiesieneetesiesese et 663

XX

Other Alternative Environments.cccoceeeeeeeeeeiiiiiiniiiiiiisnnnsnnnneeeees 665

RROAES. ..ottt ettt ettt a et et e st e raenneneens 665
Flash, F1exX, and AIR.uueeeiiooiiiiieeieeeeeeeteeeeeeeievtteeeseesssaaseessesssassseessens 666
JRuby and RUDOLO.cc.covieiiiiriiiieteeeeteeeeee e 666
MONODTOIA. ...eeuvieiieiieieee ettt et et ete e e e be e reebeebeeareas 667
APDP INVENTOT. ...ttt ettt et 667
Titanium Mobile.cooieieiiieieeeeee e 669
Other JVM Compiled Languages.ccceeuevererereneeneerenenienieneeeeeeenaens 670
Dealing With Devices.ccccoiiiiiiiiiiiiiiiinnnneeeecccciiiinnnnnceeseeeeee 673
This App Contains Explicit... InStructions..........ccceceeeevrererencrencnnenenn 673
Implied Feature ReqUESLS.cceceruerierienereeieeseeeee e 675

A Guaranteed MaTKet.........cuecueeiuieieeceecieereeseece e esre e esreereereesveeaeens 676
Other Stuff That VArIes.covcvvieveieereereeeiereeereereeere e enreeereenreenveenseenne 677
Bugs, Bugs, BUGS. ...cceeiiiiiiieieneeeeeeteeeeee e 678
DeVice TeSING. ..ccverrierierienienterterteeeeeeertere et ettt e sreesseesneeas 678
Where Do We Go From Here?.uuuueeeeiiiiiiiiiiiiiiiiininneeeecceceeenn. 681
Questions. Sometimes, With ANSWETS.cccccueeviieiieieeieciecie e 681
Heading to the SOUTCE.ccccoviiririiiiieiceeee e 682
Getting YOUr News FiX. ...cccoociiiiniiiiiniinieieeeteeeececneeeeeeee e 683

XXi

Welcome to the Warescription!

We hope you enjoy this ebook and its updates - subscribe to the
Warescription newsletter on the Warescription site to learn when new
editions of this book, or other books, are available.

All editions of CommonsWare titles, print and ebook, follow a software-
style numbering system. Major releases (1.0, 2.0, etc.) are available in both
print and ebook; minor releases (0.1, 0.9, etc.) are available in ebook form
for Warescription subscribers only. Releases ending in .9 are "release
candidates” for the next major release, lacking perhaps an index but
otherwise being complete.

Each Warescription ebook is licensed for the exclusive use of its subscriber
and is tagged with the subscriber's name. We ask that you not distribute
these books. If you work for a firm and wish to have several employees have
access, enterprise Warescriptions are available. Just contact us at
enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license - more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links.

You can search through the PDF using most PDF readers (e.g., Adobe
Reader). If you wish to search all of the CommonsWare books at once, and

XXili

mailto:enterprise@commonsware.com
http://wares.commonsware.com/

your operating system does not support that directly, you can always
combine the PDFs into one, using tools like PDF Split-And-Merge or the
Linux command pdftk *.pdf cat output combined.pdf.

xXXiv

http://www.pdfsam.org/

Preface

Welcome to the Book!

Thanks!

Thanks for your interest in developing applications for Android!
Increasingly, people will access Internet-based services using so-called
"non-traditional" means, such as mobile devices. The more we do in that
space now, the more that people will help invest in that space to make it
easier to build more powerful mobile applications in the future. Android is
new - Android-powered devices appeared on the scene first in late 2008 -
but it likely will rapidly grow in importance due to the size and scope of the
Open Handset Alliance.

And, most of all, thanks for your interest in this book! I sincerely hope you
find it useful and at least occasionally entertaining.

Warescription

This book will be published both in print and in digital (ebook) form. The
ebook versions of all CommonsWare titles are available via an annual
subscription - the Warescription.

The Warescription entitles you, for the duration of your subscription, to
ebook forms of all CommonsWare titles, not just the one you are reading.

XXV

Presently, CommonsWare offers PDF and Kindle; other ebook formats will
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in ebook form. That way, your ebooks are never out of date for
long, and you can take advantage of new material as it is made available
instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, both short articles and not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
discount off the Warescription price.

If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

You can find out when new releases of this book are available via:

« The cw-android Google Group, which is also a great place to ask
questions about the book and its examples

« The commonsguy Twitter feed

« The Warescription newsletter, which you can subscribe to off of
your Warescription page

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital
edition, and we'll give you a coupon for a six-month Warescription as a
bounty for helping us deliver a better product. You can use that coupon to
get a new Warescription, renew an existing Warescription, or give the

XXvi

http://wares.commonsware.com/
http://twitter.com/commonsguy
http://groups.google.com/group/cw-android
http://commonsware.com/warescription.html

coupon to a friend, colleague, or some random person you meet on the
subway.

By "concrete" problem, we mean things like:

« Typographical errors

« Sample applications that do not work as advertised, in the
environment described in the book

« Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page
on the CommonsWare Web site; most known problems will be listed there.
One coupon is given per email containing valid bug reports.

We appreciate hearing about "softer" issues as well, such as:

« Places where you think we are in error, but where we feel our
interpretation is reasonable

« Places where you think we could add sample applications, or
expand upon the existing material

« Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty
program.

Be sure to check the book's errata page, though, to see if your issue has
already been reported.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code And Its License

The source code samples shown in this book are available for download
from the book's GitHub repository. All of the Android projects are licensed
under the Apache 2.0 License, in case you have the desire to reuse any of it.

xxvii

http://www.apache.org/licenses/LICENSE-2.0.html
http://github.com/commonsguy/cw-android
mailto:bounty@commonsware.com
http://commonsware.com/Android/errata

If you wish to use the source code from the CommonsWare Web site, bear
in mind a few things:

1. The projects are set up to be built by Ant, not by Eclipse. If you wish
to use the code with Eclipse, you will need to create a suitable
Android Eclipse project and import the code and other assets.

2. You should delete build.xml, then run android update project
-p ... (where ... is the path to a project of interest) on those
projects you wish to use, so the build files are updated for your
Android SDK version.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-ShareAlike 3.0 license as of
the fourth anniversary of its publication date, or when 4,000 copies of the
edition have been sold, whichever comes first. That means that, once four
years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers
and the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned
Creative Commons license on 1 March 2015. Of course, watch the
CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

For more details on the Creative Commons Attribution-Noncommercial-
ShareAlike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.

xxviii

http://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgments

I would like to thank the Android team, not only for putting out a good
product, but for invaluable assistance on the Android Google Groups.

Some of the icons used in the sample code were provided by the Nuvola
icon set.

XXix

http://www.icon-king.com/?p=15

PART | - Core Concepts

CHAPTER 1

The Big Picture

Android is everywhere. Phones. Tablets. TVs and set-top boxes powered by
Google TV. Soon, Android will be in cars and all sort of other places as well.

However, the general theme of Android devices will be smaller screens
and/or no hardware keyboard. And, by the numbers, Android will probably
be most associated with smartphones for the foreseeable future.

For developers, this has benefits and drawbacks.

On the plus side, Android-style smartphones are sexy. Offering Internet
services over mobile devices dates back to the mid-1990's and the Handheld
Device Markup Language (HDML). However, only in recent years have
phones capable of Internet access taken off. Now, thanks to trends like text
messaging and to products like Apple's iPhone, phones that can serve as
Internet access devices are rapidly gaining popularity. So, working on
Android applications gives you experience with an interesting technology
(Android) in a fast-moving market segment (Internet-enabled phones),
which is always a good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the
pain of phones simply being small in all sorts of dimensions:

The Big Picture

+ Screens are small (you will not get comments like, "is that a 24-inch
LCD in your pocket, or...?")

« Keyboards, if they exist, are small

+ Pointing devices, if they exist, are annoying (as anyone who has lost
their stylus will tell you) or inexact (large fingers and "multi-touch”
LCDs can sometimes be...problematic)

« CPU speed and memory are tight compared to desktops and servers
you may be used to

« Andsoon

Moreover, applications running on a phone have to deal with the fact that
they're on a phone.

People with mobile phones tend to get very irritated when those phones do
not work. Similarly, those same people will get irritated at you if your
program "breaks" their phones:

« ...by tying up the CPU such that calls can't be received

« ...by not working properly with the rest of the phone's OS, such that
your application does not quietly fade to the background when a
call comes in or needs to be placed

« ..by crashing the phone's operating system, such as by leaking
memory like a sieve

Hence, developing programs for a phone is a different experience than
developing desktop applications, Web sites, or back-end server processes.
You wind up with different-looking tools, different-behaving frameworks,
and "different than you are used to" limitations on what you can do with
your program.

What Android tries to do is meet you halfway:

+ You get a commonly-used programming language (Java) with some
commonly used libraries (e.g., some Apache Commons APIs), with
support for tools you may be used to (Eclipse)

The Big Picture

« You get a fairly rigid and uncommon framework in which your
programs need to run so they can be "good citizens" on the phone
and not interfere with other programs or the operation of the phone
itself

As you might expect, much of this book deals with that framework and how
you write programs that work within its confines and take advantage of its
capabilities.

What Androids Are Made Of

When you write a desktop application, you are "master of your own
domain". You launch your main window and any child windows - like
dialog boxes - that are needed. From your standpoint, you are your own
world, leveraging features supported by the operating system, but largely
ignorant of any other program that may be running on the computer at the
same time. If you do interact with other programs, it is typically through an
API, such as using JDBC (or frameworks atop it) to communicate with
MySQL or another database.

Android has similar concepts, but packaged differently, and structured to
make phones more crash-resistant.

Activities

The building block of the user interface is the activity. You can think of an
activity as being the Android analogue for the window or dialog in a
desktop application, or the page in a classic Web app. Android is designed
to support lots of cheap activities, so you can allow users to keep clicking to
bring up new activities and tapping the BACK button to back up, just like
they do in a Web browser.

The Big Picture

Services

Activities are short-lived and can be shut down at any time. Services, on the
other hand, are designed to keep running, if needed, independent of any
activity. You might use a service for checking for updates to an RSS feed, or
to play back music even if the controlling activity is no longer operating.
You will also use services for scheduled tasks ("cron jobs") and for exposing
custom APIs to other applications on the device, though those are relatively
advanced capabilities.

Content Providers

Content providers provide a level of abstraction for any data stored on the
device that is accessible by multiple applications. The Android
development model encourages you to make your own data available to
other applications, as well as your own - building a content provider lets
you do that, while maintaining complete control over how your data gets
accessed.

Intents

Intents are system messages, running around the inside of the device,
notifying applications of various events, from hardware state changes (e.g.,
an SD card was inserted), to incoming data (e.g., an SMS message arrived),
to application events (e.g., your activity was launched from the device's
main menu). Not only can you respond to an Intent, but you can create
your own, to launch other activities, or to let you know when specific
situations arise (e.g., raise such-and-so Intent when the user gets within 100
meters of this-and-such location).

The Big Picture

Stuff At Your Disposal

Storage

You can package data files with your application, for things that do not
change, such as icons or help files. You also can carve out a small bit of
space on the device itself, for databases or files containing user-entered or
retrieved data needed by your application. And, if the user supplies bulk
storage, like an SD card, you can read and write files on there as needed.

Network

Android devices will generally be Internet-ready, through one
communications medium or another. You can take advantage of the
Internet access at any level you wish, from raw Java sockets all the way up
to a built-in WebKit-based Web browser widget you can embed in your
application.

Multimedia

Android devices have the ability to play back and record audio and video.
While the specifics may vary from device to device, you can query the
device to learn its capabilities and then take advantage of the multimedia
capabilities as you see fit, whether that is to play back music, take pictures
with the camera, or use the microphone for audio note-taking.

GPS

Android devices will frequently have access to location providers, such as
GPS, that can tell your applications where the device is on the face of the
Earth. In turn, you can display maps or otherwise take advantage of the
location data, such as tracking a device's movements if the device has been
stolen.

The Big Picture

Phone Services

And, of course, Android devices are typically phones, allowing your
software to initiate calls, send and receive SMS messages, and everything
else you expect from a modern bit of telephony technology.

The Big Picture...Of This Book

Here is what's coming in the rest of this book:

The next two chapters are designed to get you going quickly with the
Android environment, through a series of step-by-step, tutorial-style
instructions for setting up the tools you need, creating your first project,
and getting that first project running on the Android emulator.

The three chapters that follow try to explain a bit more about what just
happened in those first two chapters. We examine the Android project that
we created, talk a bit more about Eclipse, and discuss some things we could
add to the project to help it run on more devices and such.

The bulk of the book is exploring various capabilities of the Android APIs -
how to create components like activities, how to access the Internet and

local databases, how to get your location and show it on a map, and so
forth.

CHAPTER 2

How To Get Started

Without further ado, let us get you set up with the pieces and parts
necessary to build an Android app.

NOTE: the instructions presented here are accurate as of the time of this
writing. However, the tools change rapidly, and so these instructions may
be out of date by the time you read this. Please refer to the Android
Developers Web site for current instructions, using this as a base guideline
of what to expect.

Step #1: Java

When you write Android applications, you typically write them in Java
source code. That Java source code is then turned into the stuff that
Android actually runs (Dalvik bytecode in an APK file).

Hence, the first thing you need to do is get set up with a Java development
environment and be ready to start writing Java classes.

Install the JDK

You need to obtain and install the official Sun/Oracle Java SE SDK (JDK).
You can obtain this from the Oracle Java Web site for Windows and Linux,
and presumably from Apple for OS X. The plain JDK (sans any "bundles")

http://www.oracle.com/technetwork/java/index.html
http://developer.android.com/
http://developer.android.com/

How To Get Started

should suffice. Follow the instructions supplied by Oracle or Apple for
installing it on your machine. At the time of this writing, Android supports
Java 5 and Java 6, the latter being the now-current edition.

Alternative Java Compilers

In principle, you are supposed to use the official Sun/Oracle Java SE SDK.
In practice, it appears that Open]JDK also works, at least on Ubuntu.
However, the further removed you get from the official Sun/Oracle
implementation, the less likely it is that it will work. For example, the GNU
Compiler for Java (GCJ) may not work with Android.

Learn Java

This book, like most books and documentation on Android, assumes that
you have basic Java programming experience. If you lack this, you really
should consider spending a bit of time on Java fundamentals, before you
dive into Android. Otherwise, you may find the experience to be
frustrating.

If you are in need of a crash course in Java to get involved in Android
development, here are the concepts you need to succeed, presented in no
particular order:

+ Language fundamentals (flow control, etc.)
+ Classes and objects

« Methods and data members

« Public, private, and protected

«+ Static and instance scope

« Exceptions

+ Threads and concurrency control

« Collections

« Generics

How To Get Started

- FileI/O
+ Reflection

« Interfaces

Step #2: Install the Android SDK

The Android SDK gives you all the tools you need to create and test
Android applications. It comes in two parts: the base tools, plus version-
specific SDKs and related add-ons.

Install the Base Tools

The Android developer tools can be found on the Android Developers Web
site. Download the ZIP file appropriate for your platform and unZIP it in
some likely spot - there is no specific path that is required. Windows users
also have the option of running a self-installing EXE file.

Install the SDKs and Add-Ons

Inside the tools/ directory of your Android SDK installation from the
previous step, you will see an android batch file or shell script. If you run
that, you will be presented with the Android SDK and AVD Manager:

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

How To Get Started

- Android SDK and AVD Manager

Virtual devices List of existing Android Virtual Devices located at /home/android/.android/avc
Installed packages | | ap name N e form | API Le |W
Available packages

Settings

About

| Refresh

~ A valid Android Virtual Device. =3 A repairable Android Virtual Device.
* An Android Virtual Device that failed to load. Click 'Details' to see the erro

Figure 1. Android SDK and AVD Manager

At this point, while you have some of the build tools, you lack the Java files
necessary to compile an Android application. You also lack a few additional
build tools, plus the files necessary to run an Android emulator.

To address this, click on the Available Packages option on the left. This
brings up a tree:

Android SDK and AVD Manager

Virtual devices SDK Location: /home/android/android-sdk-linux_86
lll?stalled ackages || packages available for download
.3 ndroid Repository
Settings > hird party Add-ons
About
Description
Add Add-on Site... | Delete on Site [Dis | Refresh |

Figure 2. Android SDK and AVD Manager Available Packages

10

How To Get Started

Open the Android Repository branch of the tree. After a short pause, you
will see a screen similar to this:

Virtual devices SDK Location: fhome/android/android-sdk-linux_86

Installed packages | pacpages available for download

Available packages Sy

Settings 2 SDK Platform Android 2.2, API 8, revision 2
About 2 SDK Platform Android 2.1, APl 7, revision 2
3 SDK Platform Android 1.6, APl 4, revision 3
3 SDK Platform Android 1.5, APl 3, revision 4

» [& samples for SDK API 8, revision 1
» [& samples for SDK API 7, revision 1
» [& Third party Add-ons

Description

Add Add-on Site... & Dis |Refresh

Figure 3. Android SDK and AVD Manager Available Android Packages

You will want to check the following items:
"SDK Platform" for all Android SDK releases you want to test
against

+ "Documentation for Android SDK" for the latest Android SDK
release

« "Samples for SDK" for the latest Android SDK release, and perhaps
for older releases if you wish

Then, open the Third-Party Add-Ons branch of the tree. After a short
pause, you will see a screen similar to this:

11

How To Get Started

Virtual devices SDK Location: fhomefandroid/android-sdk-linux_86

Installed packages | packages available for download

Available packages SDK Platform Android 2.1, API 7, revision 2
Settings > SDK Platform Android 1.6, API 4, revision 3
About > SDK Platform Android 1.5, API 3, revision 4
» 1 & Samples for SDK API 8, revision 1
» [& samples for SDK API 7, revision 1
= Third party Add-ons
» || i@ Google Inc. add-ons (dl-ssl.google.com)

» [i@ Samsung Electronics add-ons (innovator.samsungmobile.com)

Description

Add Add-on Site... | ® Dis |Refresh

Figure 4. Android SDK and AVD Manager Available Third-Party Add-Ons

Fold open the "Google Inc. add-ons" branch, which will display something
like this:

Virtual devices SDK Location: /fhome/android/android-sdk-linux_86

Installed packages | | p5ckages available for download

Available packages | & hird party Add-ons

@ Google Inc. add-ons (dl-ssl.google.com)
+ [| & Google APIs by Google Inc., Android API 8, revision 2
» [i Google APIs by Google Inc., Android API 7, revision 1
» [& Google APIs by Google Inc., Android APl 4, revision 2
» [& Google APIs by Google Inc., Android API 3, revision 3
» [@ Google Market Licensing package, revision 1

Settings v
About

» @ Samsung Electronics add-ons (innovator.samsungmobile.com)

Description

Add Add-on Site... & Di: | Refresh

Figure 5. Android SDK and AVD Manager Available Google Add-Ons

Most likely, you will want to check the "Google APIs by Google Inc." items
that match up with the SDK versions you selected in the Android
Repository branch. The "Google APIs" include support for Google Maps,
both from your code and in the Android emulator.

12

How To Get Started

When you have checked all of the items you want to download, click the
Install Selected button, which brings up a license confirmation dialog:

@ cChoose Packages to Install

Packages Package Description & License
el e R il Package Description
? Google APIs by Google Inc., Andry Android SDK Platform 2.2 r1

Revision 2

Dependencies

This package is a dependency for:

- Google APIs by Google Inc., Android API 8, revision
2

@® Accept Reject Accept All

| Install | Cancel

Figure 6. Android SDK and AVD Manger Installing Packages

Review and accept the licenses, then click the Install button. At this point,
this is a fine time to go get lunch. Or, perhaps dinner. Unless you have a
substantial Internet connection, downloading all of this data and
unpacking it will take a fair bit of time.

When the download is complete, you can close up the SDK and AVD
Manager if you wish, though we will use it to set up the emulator in a later
step of this chapter.

Step #3: Install the ADT for Eclipse

If you will not be using Eclipse for your Android development, you can skip
to the next section.

If you have not yet installed Eclipse, you will need to do that first. Eclipse
can be downloaded from the Eclipse Web site. The "Eclipse IDE for Java
Developers" package will work fine.

13

http://www.eclipse.org/downloads/

How To Get Started

Next, you need to install the Android Developer Tools (ADT) plug-in. To do
this, go to Help | Install New Software... in the Eclipse main menu. Then,
click the Add button to add a new source of plug-ins. Give it some name
(e.g., Android) and supply the following URL: https://dl-
ssl.google.com/android/eclipse/. That should trigger Eclipse to download
the roster of plug-ins available from that site:

Available Software
Check the items that you wish to install.)._‘-

Work with: |Android - https://dl-ssl.google.com/android/eclipse/ v Add...
Find more software by working with the "Available Software Sites" preferences.
&

Name Version

¥ [i Developer Tools

4+ Android DDMS 8.0.1.v201012062107-82219
4+ Android Development Tools 8.0.1.v201012062107-82219
4+ Android Hierarchy Viewer 8.0.1.v201012062107-82219
Select All Deselect All
Details
& show only the latest versions of available software Hide items that are already installed
& Group items by category What is already installed?

[contact all update sites during install to find required software

@ Cancel

Figure 7. Eclipse ADT plug-in installation

Check the checkbox to the left of "Developer Tools" and click the Next
button. Follow the rest of the wizard to review the tools to be downloaded
and their respective license agreements. When the Finish button is
enabled, click it, and Eclipse will download and install the plug-ins. When
done, Eclipse will ask to restart - please let it.

Then, you need to teach ADT where your Android SDK installation is from
the preceding section. To do this, choose Window | Preferences from the

14

How To Get Started

Eclipse main menu (or the equivalent Preferences option for OS X). Click
on the Android entry in the list on the left:

& Preferences

o @ value must be an existing directory S -

General
Android
Ant
Help
Install/Update
Java
Run/Debug
Tasks
Team

Android Preferences

SDK Location: | Browse...

Note: The list of SDK Targets below is only reloaded once you hit *Apply' or 'OK".

¥ ¥ ¥Y ¥Y ¥ V¥ V¥ v)iw|vw

Usage Data Collecto
Validation
» XML

Restore Defaults

P
2 Cancel

Figure 8. Eclipse ADT configuration

Then, click the Browse... button to find the directory where you installed
the SDK. After choosing it, click Apply on the Preferences window, and you
should see the Android SDK versions you installed previously. Then, click
OK, and the ADT will be ready for use.

Step #4: Install Apache Ant

If you will be doing all of your development from Eclipse, you can skip to
the next section.

If you wish to develop using command-line build tools, you will need to
install Apache Ant. You may have this already from previous Java
development work, as it is fairly common in Java projects. However, you

15

How To Get Started

will need Ant version 1.8.1, so double-check your current copy (e.g., ant
-version) to ensure you are on the proper edition.

If you do not have Ant, you can obtain it from the Apache Ant Web site.
They have full installation instructions in the Ant manual, but the basic
steps are:

1. Unpack the ZIP archive wherever it may make sense on your
machine

2. Add a JAVA_HOME environment variable, pointing to where your JDK
is installed, if you do not have one already

3. Add an ANT_HOME environment variable, pointing to the directory
where you unpacked Ant in the first step above

4. Add $IAVA_HOME/bin and $ANT_HOME/bin to your PATH

5. Runant -version to confirm that Ant is installed properly

Step #5: Set Up the Emulator

The Android tools include an emulator, a piece of software that pretends to
be an Android device. This is very useful for development - not only does it
mean you can get started on Android without a device, but the emulator
can help test device configurations that you do not own.

The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an "Android Virtual Device", or AVD.
The SDK and AVD Manager, which you used to download the SDK

components earlier in this chapter, is where you create these AVDs.

If you do not have the SDK and AVD Manager running, you can run it via
the android command from your SDK's tools/ directory, or via Window |
SDK and AVD Manager from Eclipse. It starts up on a screen listing the
AVDs you have available - initially, the list will be empty:

16

http://ant.apache.org/manual/installlist.html
http://ant.apache.org/bindownload.cgi

How To Get Started

@™ @ Android SDK and AVD Manager

Virtual devices List of existing Android Virtual Devices located at /home/android/.android/avc
Installed packages T -t s |W
Available packages

Settings

About

| Refresh

~ A valid Android Virtual Device. =3 A repairable Android Virtual Device.
* An Android Virtual Device that failed to load. Click 'Details' to see the erro

Figure 9. Android SDK and AVD Manager

Click the New... button to create a new AVD file. This brings up a dialog
where you can configure what this AVD should look and work like:

Name: [|]
Target: | 2|
SD Card: .
® size: | | [miB <]
O File:
skin: P
@ Built-in:
O Resolution: X
Hardware: ——
Property Value | New... |
| cancel |

Figure 10. Adding a New AVD

17

How To Get Started

You need to provide the following:

« A name for the AVD. Since the name goes into files on your
development machine, you will be limited by filename conventions
for your operating system (e.g., no backslashes on Windows).

« The Android version you want the emulator to run (a.k.a., the
"target"). Choose one of the SDKs you installed via the drop-down
list. Note that in addition to "pure" Android environments, you will
have options based on the third-party add-ons you selected. For
example, you probably have some options for setting up AVDs
containing the Google APIs, and you will need such an AVD for
testing an application that uses Google Maps.

« Details about the SD card the emulator should emulate. Since
Android devices invariably have some form of "external storage”,
you probably want to set up an SD card, by supplying a size in the
associated field. However, since a file will be created on your
development machine of whatever size you specify for the card, you
probably do not want to create a 2GB emulated SD card. 32MB is a
nice starting point, though you can go larger if needed.

« The "skin" or resolution the emulator should run in. The skin
options you have will depend upon what target you chose. The skins
let you choose a typical Android screen resolution (e.g., WVGA8o0
for 800x480). You can also manually specify a resolution when you
want to test a non-standard configuration.

You can skip the "Hardware" section for now, as changing those settings is
usually only required for advanced configurations.

The resulting dialog might look something like this:

18

How To Get Started

Name: |2.3-WVGA800

Target: Google APIs (Google Inc.) - APl Levels 2

SD Card: . S ——|
® Size: |32 [|miB 2
O File:

skin: i o ; 7
@ Built-in: \WVGAB00]
O Resolution: X

Hardware:
Property Value New...

Abstracted LCD densi 240
Max VM applicationF: 24

| Create AVD | Cancel

Figure 11. Adding a New AVD (continued)

Click the Create AVD button, and your AVD stub will be created.

To start the emulator, highlight it in the list and click Start... You can skip
the launch options for now and just click Launch. The first time you launch
a new AVD, it will take a long time to start up. The second and subsequent
times you start the AVD, it will come up a bit faster, and usually you only
need to start it up once per day (e.g., when you start development). You do
not need to stop and restart the emulator every time you want to test your
application, in most cases.

The emulator will go through a few startup phases, first with a plain-text
"ANDROID" label:

19

How To Get Started

OO0 0

o(s)e
(Wl S Q)

DDDDDDD

Figure 12. Android emulator, initial startup segment

...then a graphical Android logo:

20

How To Get Started

Figure 13. Android emulator, secondary startup segment

before eventually landing at the home screen (the first time you run the
AVD, shown below) or the keyguard:

21

How To Get Started

Figure 14. Android home screen

If you get the keyguard (shown below), press the MENU button, or slide the
green lock on the screen to the right, to get to the emulator's home screen:

22

How To Get Started

10:48

Android

10:48..

Sunday, December 26
€ Charging (50%)

Figure 15. Android keyguard

Step #6: Set Up the Device

You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an
application (e.g., upload it to the Android Market). And, perhaps you
already have a device — maybe that is what is spurring your interest in
developing for Android.

The first step to make your device ready for use with development is to go
into the Settings application on the device. From there, choose
Applications, then Development. That should give you a set of checkboxes
of development-related options to consider:

23

How To Get Started

all B 09:51

USB debugging

Debug mode when USB is connected

Stay awake
Screen will never sleep while charging

Allow mock locations
Allow mock locations

Figure 16. Android device development settings

Generally, you will want to enable USB debugging, so you can use your
device with the Android build tools. You can leave the other settings alone
for now if you wish, though you may find the "Stay awake" option to be
handy, as it saves you from having to unlock your phone all of the time
while it is plugged into USB.

Next, you need to get your development machine set up to talk to your
device. That process varies by the operating system of your development
machine, as is covered in the following sections.

Windows

When you first plug in your Android device, Windows will attempt to find a
driver for it. It is possible that, by virtue of other software you have
installed, that the driver is ready for use. If it finds a driver, you are
probably ready to go.

24

How To Get Started

If the driver is not found, here are some options for getting one.

Windows Update

Some versions of Windows (e.g., Vista) will prompt you to search Windows
Update for drivers. This is certainly worth a shot, though not every device
will have supplied its driver to Microsoft.

Standard Android Driver

In your Android SDK installation, you will find a google-usb_driver
directory, containing a generic Windows driver for Android devices. You
can try pointing the driver wizard at this directory to see if it thinks this
driver is suitable for your device.

Manufacturer-Supplied Driver

If you still do not have a driver, search the CD that came with the device (if
any) or search the Web site of the device manufacturer. Motorola, for
example, has drivers available for all of their devices in one spot for
download.

OS X and Linux

Odds are decent that simply plugging in your device will "just work". You
can see if Android recognizes your device via running adb devices in a shell
(e.g., OS X Terminal), where adb is in your platform-tools/ directory of your
SDK. If you get output similar to the following, Android detected your
device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps other Linux variants), and this
command did not work, you may need to add some udev rules. For example,

25

http://developer.motorola.com/docstools/USB_Drivers/

How To Get Started

here is a 51-android.rules file that will handle the devices from a handful of
manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="@bb4", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"

SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01",
MODE="0666", OWNER="[me]"

SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

Drop that in your /etc/udev/rules.d directory on Ubuntu, then either
reboot the computer or otherwise reload the udev rules (e.g., sudo service
udev reload). Then, unplug and re-plug in the device and see if it is
detected.

26

CHAPTER 3
Your First Android Project

Now that you have the Android SDK, it is time to make your first Android
project. The good news is that this requires zero lines of code - Android's
tools create a "Hello, world!" application for you as part of creating a new
project. All you need to do is build it, install it, and see it come up on your
emulator or device.

Step #1: Create the New Project

Android's tools can create a complete skeleton project for you, with
everything you need for a complete (albeit very trivial) Android application.
The only real difference comes from whether you are using Eclipse or the
command line.

Eclipse

From the Eclipse main menu, choose File | New | Project..., and this will
bring up a list of project types to choose from. Fold open the Android
option and click on Android Project:

27

Your First Android Project

™ New Project

Select a wizard p—

Wizards:

» (= General
¥ (= Android
J& Android Test Project
* = CVS
> (=]ava
* = Examples

=

@ < Back [%J | cancel |

Fi'g-u_r-e 17. Eclipse New i’_roject Wizard

Press Next to advance the wizard to the main Android project page:

Your First Android Project

@ New Android Project

New Android Project

@ Project name must be specified

Project name:

Contents
@ Create new project in workspace
Create project from existing source

& Use default location

Create project from existing sample

Samples:
Build Target
Target Name Vendor Platform API Levt
Android 2.3 Android Open Source Project 2.3 9
Google APIs Google Inc. 2.3 9
Properties

Application name:
Package name:
B Create Activity:

Min SDK Version:

@) < Back Cancel

Figure 18. Eclipse New Project Wizard, Android Project

Fill in the following:

+ The name of the project (e.g., Now)

+ The Android SDK you wish to compile against (e.g., Google APIs for
Android 2.3.3)

« The name of the Java package in which this project goes (e.g.,
com.commonsware.android.skeleton)

29

Your First Android Project

+ The name of the initial activity to create (e.g., Now)

@ New Android Project

New Android Project

Creates a new Android Project resource.

Project name: |Now

Contents
@® Create new project in workspace
Create project from existing source

[Use default location

Create project from existing sample

Samples:
Build Target
Target Name Vendor Platform API Levt
Android 2.3 Android Open Source Project 2.3 9
& Google APIs Google Inc. 2.3 9

Android + Google APIs
Properties
Application name:

Package name: com.commonsware.android.skeleton

[Create Activity: |Now

Min SDK Version:

@:l | < Back | Next > | Cancel | | Finish J

Figure 19. Eclipse New Project Wizard, Android Project (continued)

At this point, clicking Finish will create your Eclipse project.

30

Your First Android Project

Command Line

Here is a sample command that creates an Android project from the
command line:

android create project --target "Google Inc.:Google APIs:7" --path Skeleton/Now
--activity Now --package com.commonsware.android.skeleton

This will create an application skeleton for you, complete with everything
you need to build your first Android application: Java source code, build
instructions, etc. However, you are probably going to need to customize
this somewhat. Here are what those command-line switches mean:

« --target indicates what version of Android you are "targeting" in
terms of your build process. You need to supply the ID of a target
that is installed on your development machine, one you
downloaded via the SDK and AVD Manager. You can find out what
targets are available via the android 1ist targets command.
Typically, your build process will target the newest version of
Android that you have available.

« --path indicates where you want the project files to be generated.
Android will create a directory if the one you name does not exist.
For example, in the command shown above, a Skeleton/Now/
directory will be created (or used if it exists) underneath the current
working directory, and the project files will be stored there.

« --activity indicates the Java class name of your first activity for this
project. Do not include a package name, and the name has to meet
Java class naming conventions.

« --package indicates the Java package in which your first activity will
be located. This package also uniquely identifies your project on any
device on which you install it, and this package also needs to be
unique on the Android Market if you plan on distributing your
application there. Hence, typically, you construct your package
based on a domain name you own (e.g.,
com.commonsware.android.skeleton), to reduce the odds of an
accidental package name collision with somebody else.

31

Your First Android Project

For your development machine, you will need to pick a suitable target, and
you may wish to change the path. The activity and package you can leave
alone for now.

Step #2: Build, Install, and Run the
Application in Your Emulator or Device

Having a project is nice and all, but it would be even better if we could
build and run it, whether on the Android emulator or your Android device.
Once again, the process differs somewhat depending on whether you are
using Eclipse or not.

Eclipse

With your project selected in the Package Explorer pane, click the green
"play” button in the Eclipse toolbar to run your project. The first time you
do this, you will have to go through a few steps to set up a "run
configuration”, so Eclipse knows what you want to do.

First, in the "Run As" list, choose "Android Application":

Select a way to run 'Now":

)

Ji Android JUnit Test
E Java Applet

1 Java Application
Ju JUnit Test

Description
Runs an Android Application

@ cancel | oK |

Figure 20. Eclipse "Run As" List

32

Your First Android Project

If you have more than one emulator AVD or device available, you will then
get an option to choose which you wish to run the application on.
Otherwise, if you do not have a device plugged in, the emulator will start up
with the AVD you created earlier. Then, Eclipse will install the application

on your device or emulator and start it up.

Command Line

For developers not using Eclipse, in your terminal, change into the

Skeleton/Now directory, then run the following command:

|ant clean install

The Ant-based build should emit a list of steps involved in the installation

process, which look like this:

Buildfile: /home/some-balding-guy/projects/Skeleton/Now/build.xml

[setup] Android SDK Tools Revision 8

[setup] Project Target: Google APIs

[setup] Vendor: Google Inc.

[setup] Platform Version: 2.1-updatel

[setup] API level: 7

[setup]

[setup] ------------------

[setup] Resolving library dependencies:

[setup] No library dependencies.

[setup]

[setup] ------------------

[setup]

[setup] WARNING: No minSdkVersion value set. Application will install on all
Android versions.

[setup]

[setup] Importing rules file: tools/ant/main_rules.xml

clean:
[delete] Deleting directory /home/some-balding-guy/projects/Skeleton/Now/bin

-debug-obfuscation-check:
-set-debug-mode:
-compile-tested-if-test:
-dirs:

[echo] Creating output directories if needed...
[mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin

33

Your First Android Project

[mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/gen
[mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin/classes

-pre-build:

-resource-src:
[echo] Generating R.java / Manifest.java from the resources...

-aidl:
[echo] Compiling aidl files into Java classes...

-pre-compile:

compile:

[javac] /opt/android-sdk-linux/tools/ant/main_rules.xml:361: warning:
'includeantruntime' was not set, defaulting to build.sysclasspath=1last; set to
false for repeatable builds

[javac] Compiling 2 source files to /home/some-balding-
guy/projects/Skeleton/Now/bin/classes

-post-compile:
-obfuscate:

-dex:
[echo] Converting compiled files and external libraries into /home/some-
balding-guy/projects/Skeleton/Now/bin/classes.dex...

-package-resources:
[echo] Packaging resources
[aapt] Creating full resource package...

-package-debug-sign:
[apkbuilder] Creating Now-debug-unaligned.apk and signing it with a debug key...

debug:

[echo] Running zip align on final apk...

[echo] Debug Package: /home/some-balding-guy/projects/Skeleton/Now/bin/Now-
debug.apk

BUILD SUCCESSFUL
Total time: 4 seconds

Note the BUILD successruL at the bottom - that is how you know the
application compiled successfully.

When you have a clean build, in your emulator or device, open up the
application launcher, typically found at the bottom of the home screen:

34

Your First Android Project

R @ 4:04pPm

P m e &

Alarm Clock APIDemos Browser Calculator

w mE R

Camera Contacts Custom Dev Tools

Locale

823

Email Gallery Gestures Messaging
Builder

O N @

Music Now Phone Settings

Figure 21. Android emulator application launcher

Notice there is an icon for your Now application. Click on it to open it and
see your first activity in action. To leave the application and return to the
launcher, press the "BACK button", located to the right of the [MENU]
button, and looks like an arrow pointing to the left.

35

CHAPTER 4
Examining Your First Project

The previous chapter stepped you through creating a stub project. Now, let
us take a peek at what is inside of this project, so you understand what
Android gives you at the outset and what the roles are for the various
directories and files.

Project Structure

The Android build system is organized around a specific directory tree
structure for your Android project, much like any other Java project. The
specifics, though, are fairly unique to Android - the Android build tools do
a few extra things to prepare the actual application that will run on the
device or emulator. Here's a quick primer on the project structure, to help
you make sense of it all, particularly for the sample code referenced in this
book.

Root Contents

When you create a new Android project (e.g., via android create project),
you get several items in the project's root directory, including:

+ AndroidManifest.xml, which is an XML file describing the application
being built and what components - activities, services, etc. — are
being supplied by that application

+ bin/, which holds the application once it is compiled

37

Examining Your First Project

« 1libs/, which holds any third-party Java JARs your application
requires

« res/, which holds "resources", such as icons, GUI layouts, and the
like, that get packaged with the compiled Java in the application

« src/, which holds the Java source code for the application

In addition to the files and directories shown above, you may find any of
the following in Android projects:

« assets/, which hold other static files you wish packaged with the
application for deployment onto the device

« gen/, where Android's build tools will place source code that they
generate

+ build.xml and *.properties, which are used as part of the Ant-based
command-line build process, if you are not using Eclipse

+ proguard.cfg, which is used for integration with ProGuard for
obfuscating your Android code

The Sweat Off Your Brow

When you created the project (e.g., via android create project), you
supplied the fully-qualified class name of the "main" activity for the
application (e.g., com.commonsware.android.SomeDemo). You will then find that
your project's src/ tree already has the namespace directory tree in place,
plus a stub Activity subclass representing your main activity (e.g.,
src/com/commonsware/android/SomeDemo.java). You are welcome to modify
this file and add others to the src/ tree as needed to implement your
application.

The first time you compile the project (e.g., via ant), out in the "main"
activity's namespace directory, the Android build chain will create R.java.
This contains a number of constants tied to the various resources you
placed out in the res/ directory tree. You should not modify R.java yourself,
letting the Android tools handle it for you. You will see throughout many of

38

http://proguard.sourceforge.net/

Examining Your First Project

the samples where we reference things in Rr.java (e.g., referring to a layout's
identifier via R.layout.main).

And Now, The Rest of the Story

You will also find that your project has a res/ directory tree. This holds
"resources" — static files that are packaged along with your application,
either in their original form or, occasionally, in a preprocessed form. Some
of the subdirectories you will find or create under res/ include:

+ res/drawable/ for images (PNG, JPEG, etc.)
+ res/layout/ for XML-based Ul layout specifications
« res/menu/ for XML-based menu specifications

« res/raw/ for general-purpose files (e.g,. an audio clip, a CSV file of
account information)

+ res/values/ for strings, dimensions, and the like

« res/xml/ for other general-purpose XML files you wish to ship

Some of the directory names may have suffixes, like res/drawable-hdpi/.
This indicates that the directory of resources should only be used in certain
circumstances - in this case, the drawable resources should only be used on
devices with high-density screens.

We will cover all of these, and more, in later chapters of this book.

In your initial project, you will find:

. res/drawable-hdpi/icon.png, res/drawable-1dpi/icon.png, and
res/drawable-mdpi/icon.png, which are three renditions of a
placeholder icon for your application for high-, low-, and medium-
density screens, respectively

+ res/layout/main.xml, which contains an XML file that describes the
very simple layout of your user interface

39

Examining Your First Project

« res/values/strings.xml, which contains externalized strings, notably
the placeholder name of your application

What You Get Out Of It

When you compile your project (via ant or the IDE), the results go into the
bin/ directory under your project root. Specifically:

« bin/classes/ holds the compiled Java classes

« bin/classes.dex holds the executable created from those compiled
Java classes

« bin/yourapp.ap_ holds your application's resources, packaged as a
ZIP file (where yourapp is the name of your application)

+ bin/yourapp-*.apk is the actual Android application (where * varies)

The .apk file is a ZIP archive containing the .dex file, the compiled edition
of your resources (resources.arsc), any un-compiled resources (such as
what you put in res/raw/) and the AndroidManifest.xml file. If you build a
debug version of the application - which is the default - you will have
yourapp-debug.apk and yourapp-debug-aligned.apk as two versions of your
APK. The latter has been optimized with the zipalign utility to make it run
faster.

Inside Your Manifest

The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare
what is inside your application - the activities, the services, and so on. You
also indicate how these pieces attach themselves to the overall Android
system; for example, you indicate which activity (or activities) should
appear on the device's main menu (a.k.a., launcher).

When you create your application, you will get a starter manifest generated
for you. For a simple application, offering a single activity and nothing else,
the auto-generated manifest will probably work out fine, or perhaps require

40

Examining Your First Project

a few minor modifications. On the other end of the spectrum, the manifest
file for the Android API demo suite is over 1,000 lines long. Your production
Android applications will probably fall somewhere in the middle.

In The Beginning, There Was the Root, And It Was
Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">

</manifest>

Note the namespace declaration. Curiously, the generated manifests only
apply it on the attributes, not the elements (e.g., manifest, not
android:manifest). However, that pattern works, so unless Android changes,
stick with their pattern.

The biggest piece of information you need to supply on the manifest
element is the package attribute (also curiously not-namespaced). Here, you
can provide the name of the Java package that will be considered the "base"
of your application. Then, everywhere else in the manifest file that needs a
class name, you can just substitute a leading dot as shorthand for the
package. For example, if you needed to refer to
com.commonsware.android.search.Snicklefritz in this manifest shown above,
you could just use .Snicklefritz, since com.commonsware.android.search is
defined as the application's package.

As noted in the previous chapter, your package also is a unique identifier
for your application. A device can only have one application installed with a
given package, and the Android Market will only list one project with a
given package.

Your manifest also specifies android:versionName and android:versionCode
attributes. These represent the versions of your application. The
android:versionName value is what the user will see in the Applications list in

41

Examining Your First Project

their Settings application. Also, the version name is used by the Android
Market listing, if you are distributing your application that way. The version
name can be any string value you want. The android:versionCode, on the
other hand, must be an integer, and newer versions must have higher
version codes than do older versions. Android and the Android Market will
compare the version code of a new APK to the version code of an installed
application to determine if the new APK is indeed an update. The typical
approach is to start the version code at 1 and increment it with each
production release of your application, though you can choose another
convention if you wish.

An Application For Your Application

In your initial project's manifest, the only child of the <manifest> element is
an <application> element. The children of the <application> element
represent the core of the manifest file.

One attribute of the <application> element that you may need in select
circumstances is the android:debuggable attribute. This needs to be set to
true if you are installing the application on an actual device and you are
using Eclipse (or another debugger) and if your device precludes debugging
without this flag. For example, the Nexus One requires android:debuggable
= "true", according to some reports.

By default, when you create a new Android project, you get a single
<activity> element inside the <application> element:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
</manifest>

42

Examining Your First Project

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (frequently) an
<intent-filter> child element describing under what conditions this
activity will be displayed. The stock <activity> element sets up your activity
to appear in the launcher, so users can choose to run it. As we'll see later in
this book, you can have several activities in one project, if you so choose.

43

CHAPTER 5

A Bit About Eclipse

Eclipse is an extremely popular IDE, particularly for Java development. It is
also designed to be extensible via an add-in system. To top it off, Eclipse is
open source. That combination made it an ideal choice of IDE to get
attention from the core Android developer team.

Specifically, to go alongside the Android SDK, Google has published some
add-ins for the Eclipse environment. Primary among these is the Android
Developer Tools (ADT) add-in, which gives the core of Eclipse awareness of
Android.

What the ADT Gives You

The ADT add-in, in essence, takes regular Eclipse operations and extends
them to work with Android projects. For example, with Eclipse, you get:

« New project wizards to create regular Android projects, Android
test projects, etc.

« The ability to run an Android project just like you might run a
regular Java application - via the green Run button in the toolbar —
despite the fact that this really involves pushing the Android
application over to an emulator or device, possibly even starting up
the emulator if it is not running

+ Tooltip support for Android classes and methods

« Andsoon

45

A Bit About Eclipse

In addition, the latest version of the ADT provides you with preliminary
support for drag-and-drop GUI editing. While this book will focus on the
XML files that Eclipse will generate, Eclipse now lets you assemble those
XML files by dragging Ul components around on the screen, adjusting
properties as you go. Drag-and-drop GUI editing is fairly new, and so there
may be a few rough edges for a while as the community and Google identify
the problems and limitations with the current implementation.

Coping with Eclipse
Eclipse is a powerful tool. Like many powerful tools, Eclipse is sometimes

confounding. Determining how to solve some specific development
problem can be a challenge, exacerbated by the new-ness of Android itself.

This section offers some tips for handling some common issues in using
Eclipse with Android.

How to Import a Non-Eclipse Project

Not all Android projects ship with Eclipse project files, such as the sample
projects associated with this book. However, these can still be easily added
to your Eclipse workspace, if you wish. Here is how to do it!

First, choose File > New > Project... from the Eclipse main menu:

46

A Bit About Eclipse

= Java - Eclipse
Edit Run Source Refactor Mavigate Search Project Window Help

MNew Alt+Shift+N v | 2% Java Project |
Open File... T Project..
Close Ctrl+W | B Package
Close All Ctrl+Shift+W | (& Class
Save Curles | @ Interface
Save As... @ | Enum
Save Al CtrisShiftss | & Annotation
vt
Revert Source Folder
150 Java Working Set
Move... (% Folder
Rename... F2 % File
2l | |Refresh F5 | 2 Untitled Text File
Convert Line Delimiters To » E¢ JUnit Test Case
Print... Ctl«P | [0 Task
Switch Workspace v [Example.
e = Other.. Ctrl+N
g2y Import..
gy Export...
Properties Alt+Enter
Exit

Figure 22. File menu in Eclipse

Then, choose Android > Android Project from the tree of available project
types:

47

A Bit About Eclipse

Select a wizard

= New Project = @

Wizards:
type filter text

. = General
4 = Android
% Android Project
J,‘G Android Test Project
> = CV5
. = Java
. = Examples

'fzt] < Bac Mext = Finish Cancel

Figure 23. New project wizard in Eclipse

Note: if you do not see this option, you have not installed the Android
Developer Tools.

Then, in the next page of the project creation wizard, choose the "Create
project from existing source" radio button, click the [Browse...] button, and
open the directory containing your project's AndroidManifest.xml file. This
will populate most of the rest of this screen, though you may need to also
specify a build target from the table:

48

A Bit About Eclipse

= New Android Project =

New Android Project
3 An SDK Target must be specified.

Project name: CrudeBench

Contents
Create new project in workspace
@ Create project from existing source

Use default location

Location: C:\Users\CommeonsWare\Desktophcommonsguy-crudeb Browse

Create project from existing sample

Samples: | Please select a target.

Build Target
Target Name Vendor Platform APL.. =
Android 2.2 Android Open Source Project 22 8
Google APIs Googlelnc, 22 8 -

Standard Android platform 2.2

Properties

Application name: | CrudeBench

Package name: com.commonsware.andreid.crude
Create Activity: | .CrudeBench

Min SDK Version:

< Back Finish Cancel

Figure 24. Android project wizard in Eclipse

Then, click [Finish]. This will return you to Eclipse, with the imported
project in your workspace:

49

A Bit About Eclipse

2 Package Exp o s Hierarchy| = O

=h=3

=

4 7= CrudeBench
. G grp
- G& gen [Generated Java Files]
. =i, Android 2.2

G@ assets

. B2 res

) AndroidManifest.xmil

build.properties

2| build.xml

default.properties
LICEMSE
README.markdown

Figure 25. Android project tree in Eclipse

Next, right-click over the project name, and choose Build Path > Configure
Build Path from the context menu:

[% Package " Ao ==
New 3
Go Into
a|7= Crude
» T8 g Open in MNew Window
. 28 ge .
g Open Type Hierarchy F4
EVAT o Alt+Shift=W »
== as
B2 rel 2 Copy Cirl+C
dl Ar E= Copy Qualified Name
B & past Ctrl+V
5 Paste rl+
EAR-Is
dd & Delete Delete
[
:E Remove from Context Ctrl+Alt+5hift+Down
Build Path b | $@ Link Source...
Source Alt+5Shift+5 » | {7 MNew Source Felder..,
I 3
Refactor Alt+Shift+T k:.‘% Use as Source Folder
giy Import... g Add External Archives...
ey Export.. =i, Add Libraries...
¥ Refresh F5 | w Configure Build Path...

Figl.ire 26. Project context menu in Eclipse

50

A Bit About Eclipse

This brings up the build path portion of the project properties window:

~ Properties for CrudeBench = @

Java Build Path MR
Resource
Android [Source | 1= Projects | = Libraries % Order and Export
Builders Build class path order and exported entries:
Java Build Path (Exported entries are contributed to dependent projects)
Java Code Style [#2CrudeBench/src Up
Java Compiler 2 CrudeBench/gen —————————————
Java Editor = Android 2.2 Down
Javadoc Location
Project References T
Run/Debug Settings -
Task Repository Bottom
Task Tags
WValidation Select All
WikiText ——

Deselect All
\/7? [QK] | Cancel

Figure 27. Project properties window in Eclipse

If the Android JAR is not checked (see the Android 2.2 entry in the above
image), check it, then close the properties window. At this point, your
project should be ready for use.

How to Get To DDMS

Many times, you will be told to take a look at something in DDMS, such as
the LogCat tab to examine Java stack traces. In Eclipse, DDMS is a
perspective. To open this perspective in your workspace, choose Window >
Open Perspective > Other... from the main menu:

51

A Bit About Eclipse

i Mew Window r o o v -
Mew Editor
Open Perspective r ﬁ? Debug
Show View v | &) Java Browsing
Customize Perspective... Other...

Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives
Mavigation *

Android SDK and AVD Manager

Preferences

Figure 28. Perspective menu in Eclipse

Then, in the list of perspectives, choose DDMS:

52

A Bit About Eclipse

= Open Perspective = @

Eacvs Repositery Exploring
DDMS
ﬁﬁ'«Debug
&) Java (default)
S\JJa\ra Browsing
?gJJa\ra Type Hierarchy
') Planning

5 Resource
£0Team Synchronizing
X XML

OFK Cancel

Figure 29. Perspective roster in Eclipse

This will add the DDMS perspective to your workspace and open it in your
Eclipse IDE.

DDMS is covered in greater detail in a later chapter of this book.

How to Create an Emulator

By default, your Eclipse environment has no Android emulators set up. You
will need one before you can run your project successfully.

To do this, first choose Window > Android SDK and AVD Manager from the
main menu:

53

A Bit About Eclipse

Mew Window
Mew Editor

5 E itor]
Open Perspective |
Show View k

Customize Perspective...
Save Perspective As...
Feset Perspective...
Close Perspective

Close All Perspectives
Mavigation b

Android 5DK and AVD Manager

Preferences

Figure 30. Android AVD Manager menu option in Eclipse

That brings up the same window as you can get by running android from
the command line.

How to Run a Project

Given that you have an AVD defined, or that you have a device set up for
debugging and connected to your development machine, you can run your
project in the emulator.

First, click the Run toolbar button, or choose Project > Run from the main
menu. This will bring up the "Run As" dialog the first time you run the
project:

54

A Bit About Eclipse

= Run As = @

Select a way to run 'CrudeBench’:

[T Android Application

Ji Android JUnit Test

5] Java Applet

[Java Application

Ju JUnit Test

Description

'/:? Ok Cancel

Figure 31. Android AVD Manager menu option in Eclipse

Choose Android Application and click OK. If you have more than one AVD
or device available, you will be presented with a window where you choose
the desired target environment. Then, the emulator will start up to run
your application. Note that you will need to unlock the lock screen on the
emulator (or device) if it is locked.

How Not to Run Your Project

When you go to run your project, be sure to not have an XML file be the
active tab in the editor. Attempting to "run" this will result in a .out file
being created in whatever directory the XML file lives in (e.g.,
res/layout/main.xml.out). To recover, simply delete the offending .out file
and try running again, this time with a Java file as the active tab.

Alternative IDEs

If you really like Eclipse and the ADT, you may want to consider
MOTODEYV Studio for Android. This is another set of add-ins for Eclipse,

55

http://developer.motorola.com/docstools/motodevstudio/

A Bit About Eclipse

augmenting the ADT and offering a number of other Android-related
development features, including:

« More wizards for helping you create Android classes

- Integrated SQLite browsing, so you can manipulate a SQLite
database in your emulator right from your IDE

« More validators to check for common bugs, and a library of code
snippets to have fewer bugs at the outset

« Assistance with translating your application to multiple languages

+ And much more

While MOTODEYV Studio for Android is published by Motorola, you can
use it to build applications for all Android devices, not only those
manufactured by Motorola themselves.

Other IDEs are slowly getting their equivalents of the ADT, albeit with
minimal assistance from Google. For example, Intelli]'s IDEA has a module
for Android - originally commercial, it is part of the open source
community edition of IDEA as of version 10.

And, of course, you do not need to use an IDE at all. While this may sound
sacrilegious to some, IDEs are not the only way to build applications. Much
of what is accomplished via the ADT can be accomplished through
command-line equivalents, meaning a shell and an editor is all you truly
need. For example, the author of this book does not presently use an IDE
and has no intention of adopting Eclipse any time soon.

More on the Tools

More coverage of DDMS, Hierarchy View, and other tools can be found
later in this book.

56

A Bit About Eclipse

IDEs...And This Book

You are welcome to use Eclipse as you work through this book. You are
welcome to use another IDE if you wish. You are even welcome to skip the
IDE outright and just use an editor.

This book is focused on demonstrating Android capabilities and the APIs
for exploiting those capabilities. It is not aimed at teaching the use of any
one IDE. As such, the sample code shown should work in any IDE,
particularly if you follow the instructions for importing non-Eclipse
projects into Eclipse supplied above.

57

CHAPTER 6
Enhancing Your First Project

The AndroidManifest.xml file that Android generated for your first project
gets the job done. However, for a production application, you may wish to
consider adding a few attributes and elements, such as those described in
this chapter.

Supporting Multiple Screens

Android devices come with a wide range of screen sizes, from 2.8" tiny
smartphones to 46" Google TVs. Android divides these into four buckets,
based on physical size and the distance at which they are usually viewed:

« Small (under 3")
« Normal (3" to around 4.5")
« Large (4.5" to around 10")

+ Extra-large (over 10")

By default, your application will not support small screens, will support
normal screens, and may support large and extra-large screens via some
automated conversion code built into Android.

To truly support all the screen sizes you want, you should consider adding a
<supports-screens> element. This enumerates the screen sizes you have
explicit support for. For example, if you want to support small screens, you

59

Enhancing Your First Project

will need the <supports-screens> element. Similarly, if you are providing
custom UI support for large or extra-large screens, you will want to have
the <supports-screens> element. So, while the starting manifest file works,
handling multiple screen sizes is something you will want to think about.

Much more information about providing solid support for all screen sizes
can be found later in this book.

Specifying Versions

As was noted in the previous chapter, your manifest already contains some
version information, about your own application's version. However, you
probably want to add a <uses-sdk> element as a child of the <manifest>
element to your AndroidManifest.xml file, to specify what versions of
Android you are supporting. By default, your application is assumed to
support every Android version from 1.0 to the current 3.0 and onward to
any version in the future. Most likely, that is not what you want.

The most important attribute for your «<uses-sdk> element is
android:minSdkversion. This indicates what is the oldest version of Android
you are testing with your application. The value of the attribute is an
integer representing the Android SDK version:

+ Android1o=1

« Androidi11=2

« Android15=3

« Android 1.6 = 4

« Android2.0=5

+ Android 2.01=6
+ Android 21=7

« Android2.2=8

« Android23=9

+ Android 2.3.3=10

60

Enhancing Your First Project

+ Android3.o=1u

So, if you are only testing your application on Android 2.1 and newer
versions of Android, you would set your android:minSdkVersion to be 7.

You may also wish to specify an android:targetSdkversion attribute. This
indicates what version of Android you are thinking of as you are writing
your code. If your application is run on a newer version of Android,
Android may do some things to try to improve compatibility of your code
with respect to changes made in the newer Android. So, right now, you
might specify android:targetSdkversion="10", indicating you are writing
your application with Android 2.3.3 in mind - if your app someday is run on
an Android 3.0 device, Android may take some extra steps to make sure
your 2.3.3-centric code runs correctly on the 3.0 device. In particular, to get
the new "Honeycomb" look-and-feel when running on an Android 3.0 (or
higher) tablet, you need to specify a target SDK version of 11 - this will be
covered in more detail later in the book.

61

PART Il - Activities

CHAPTER 7
Rewriting Your First Project

The project you created in a previous chapter was just the default files
generated by the Android build tools - you did not write any Java code
yourself. In this chapter, we will modify that project to have a somewhat
more interactive sample. Along the way, we will examine the basic Java
code that makes up an Android activity.

NOTE: The instructions in this chapter assume you followed the original
instructions in terms of the names of packages and files. If you used
different names back then, you will need to adjust the following steps to
match.

The Activity

Your project's src/ directory contains the standard Java-style tree of
directories based upon the Java package you chose when you created the
project (e.g., com.commonsware.android results in
src/com/commonsware/android/). Inside the innermost directory you should
find a pre-generated source file named Now.java, which is where your first
activity will go.

Open Now. java in your editor and paste in the following code:

package com.commonsware.android.skeleton;

import android.app.Activity;

65

Rewriting Your First Project

import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {
Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

}

public void onClick(View view) {
updateTime();

private void updateTime() {
btn.setText(new Date().toString());
}
}

Or, if you download the source files off the Web site, you can just use the
Skeleton/Now project directly.

Dissecting the Activity

Let's examine this Java code piece by piece:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

The package declaration needs to be the same as the one you used when
creating the project. And, like any other Java project, you need to import
any classes you reference. Most of the Android-specific classes are in the
android package.

66

http://commonsware.com/Android/

Rewriting Your First Project

Remember that not every Java SE class is available to Android programs!
Visit the Android class reference to see what is and is not available.

public class Now extends Activity implements View.OnClickListener {
Button btn;

Activities are public classes, inheriting from the android.app.Activity base
class. In this case, the activity holds a button (btn). Since, for simplicity, we
want to trap all button clicks just within the activity itself, we also have the
activity class implement onClickListener.

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

The oncreate() method is invoked when the activity is started. The first
thing you should do is chain upward to the superclass, so the stock Android
activity initialization can be done.

In our implementation, we then create the button instance (new
Button(this)), tell it to send all button clicks to the activity instance itself
(via setonClickListener()), call a private updateTime() method (see below),
and then set the activity's content view to be the button itself (via
setContentView()).

We will discuss that magical Bundle icicle in a later chapter. For the
moment, consider it an opaque handle that all activities receive upon
creation.

public void onClick(View view) {
updateTime();
}

In Swing, a JButton click raises an Actionkvent, which is passed to the
ActionListener configured for the button. In Android, a button click causes

67

http://code.google.com/android/reference/packages.html

Rewriting Your First Project

onClick() to be invoked in the onClickListener instance configured for the
button. The listener is provided the view that triggered the click (in this
case, the button). All we do here is call that private updateTime() method:

private void updateTime() {
btn.setText(new Date().toString());

}

When we open the activity (onCreate()) or when the button is clicked
(onClick()), we update the button's label to be the current time via
setText(), which functions much the same as the JButton equivalent.

Building and Running the Activity

To build the activity, either use your IDE's built-in Android packaging tool,
or run ant clean install in the base directory of your project, as was
described in a previous chapter. Then, run the activity - it should be
automatically launched for you if you are using Eclipse, else find the
activity in the home screen launcher. You should see an activity akin to:

| EhMl & 9:59 Pm |

Tue Aug 19 21:59:51 GMT+00:00 2008

el
Figure 32. The Now demonstration activity

68

Rewriting Your First Project

Clicking the button - in other words, pretty much anywhere on the phone's
screen — will update the time shown in the button's label.

Note that the label is centered horizontally and vertically, as those are the
default styles applied to button captions. We can control that formatting,
which will be covered in a later chapter.

After you are done gazing at the awesomeness of Advanced Push-Button
Technology™, you can click the back button on the emulator to return to
the launcher.

About the Remaining Examples

The chapters so far have given you some steps to work through yourself. If
you like that style of learning, you may wish to read Android Programming
Tutorials, by the author of this book. That book contains over 40 tutorials
with step-by-step instructions, so you can learn by doing. If you obtained
this book on the Warescription plan, you already have access to Android
Programming Tutorials - just download that book and go!

The rest of the chapters in this book present existing sample code, which
you can download if you wish. You are also welcome to key or paste in the
sample code from the book, though that is not the expectation.

69

http://commonsware.com/warescription
http://commonsware.com/AndTutorials
http://commonsware.com/AndTutorials

CHAPTER 8
Using XML-Based Layouts

While it is technically possible to create and attach widgets to our activity
purely through Java code, the way we did in the preceding chapter, the
more common approach is to use an XML-based layout file. Dynamic
instantiation of widgets is reserved for more complicated scenarios, where
the widgets are not known at compile-time (e.g., populating a column of
radio buttons based on data retrieved off the Internet).

With that in mind, it's time to break out the XML and learn how to lay out
Android activity views that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets'
relationships to each other - and to containers - encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as
such layout files are stored in the res/layout directory inside your Android
project.

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one view. The attributes of the XML elements are
properties, describing how a widget should look or how a container should
behave. For example, if a Button element has an attribute value of
android:textStyle = "bold", that means that the text appearing on the face
of the button should be rendered in a boldface font style.

71

Using XML-Based Layouts

Android's SDK ships with a tool (aapt) which uses the layouts. This tool
should be automatically invoked by your Android tool chain (e.g., Eclipse,
Ant's build.xml). Of particular importance to you as a developer is that aapt
generates the R.java source file within your project's gen/ directory,
allowing you to access layouts and widgets within those layouts directly
from your Java code, as will be demonstrated later in this chapter.

Why Use XML-Based Layouts?

Most everything you do using XML layout files can be achieved through
Java code. For example, you could use setTypeface() to have a button
render its text in bold, instead of using a property in an XML layout. Since
XML layouts are yet another file for you to keep track of, we need good
reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view
definition, such as a GUI builder in an IDE like Eclipse or a dedicated
Android GUI designer like DroidDraw. Such GUI builders could, in
principle, generate Java code instead of XML. The challenge is re-reading
the definition in to support edits - that is far simpler if the data is in a
structured format like XML than in a programming language. Moreover,
keeping the generated bits separated out from hand-written code makes it
less likely that somebody's custom-crafted source will get clobbered by
accident when the generated bits get re-generated. XML forms a nice
middle ground between something that is easy for tool-writers to use and
easy for programmers to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace.
Microsoft's XAML, Adobe's Flex, Google's GWT, and Mozilla's XUL all take
a similar approach to that of Android: put layout details in an XML file and
put programming smarts in source files (e.g., Javascript for XUL). Many
less-well-known GUI frameworks, such as ZK, also use XML for view
definition. While "following the herd" is not necessarily the best policy, it
does have the advantage of helping to ease the transition into Android from
any other XML-centered view description language.

72

http://www.zkoss.org/
http://www.mozilla.org/projects/xul/
http://www.adobe.com/products/flex/
http://windowssdk.msdn.microsoft.com/en-us/library/ms752059.aspx
http://droiddraw.org/

Using XML-Based Layouts

OK, So What Does It Look Like?

Here is the Button from the previous chapter's sample application,
converted into an XML layout file, found in the Layouts/NowRedux sample
project:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button”
android:text=""
android:layout_width="fill_parent"
android:layout_height="fill parent"/>

The class name of the widget - Button - forms the name of the XML
element. Since Button is an Android-supplied widget, we can just use the
bare class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as
well (e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace:

|xmlns:android="http://schemas.android.com/apk/res/android" |

All other elements will be children of the root and will inherit that
namespace declaration.

Because we want to reference this button from our Java code, we need to
give it an identifier via the android:id attribute. We will cover this concept
in greater detail later in this chapter.

The remaining attributes are properties of this Button instance:

+ android:text indicates the initial text to be displayed on the button
face (in this case, an empty string)

+ android:layout_width and android:layout_height tell Android to have
the button's width and height fill the "parent”, in this case the entire
screen - these attributes will be covered in greater detail in a later
chapter

73

Using XML-Based Layouts

Since this single widget is the only content in our activity's view, we only
need this single element. Complex views will require a whole tree of
elements, representing the widgets and containers that control their
positioning. All the remaining chapters of this book will use the XML layout
form whenever practical, so there are dozens of other examples of more
complex layouts for you to peruse.

What's With the @ Signs?

Many widgets and containers only need to appear in the XML layout file
and do not need to be referenced in your Java code. For example, a static
label (Textview) frequently only needs to be in the layout file to indicate
where it should appear. These sorts of elements in the XML file do not need
to have the android:id attribute to give them a name.

Anything you do want to use in your Java source, though, needs an
android:id.

The convention is to use @+id/... as the id value, where the ... represents
your locally-unique name for the widget in question, for the first
occurrence of a given id value in your layout file. The second and
subsequent occurrences in the same layout file should drop the + sign - a
feature we will use in an upcoming chapter. In the XML layout example in
the preceding section, @+id/button is the identifier for the Button widget.

Android provides a few special android:id values, of the form
@android:id/... — we will see some of these in various chapters of this book.

And We Attach These to the Java...How?

Given that you have painstakingly set up the widgets and containers for
your view in an XML layout file named main.xml stored in res/layout, all you
need is one statement in your activity's onCreate() callback to use that
layout:

|setContentView(R.layout.main); |

74

Using XML-Based Layouts

This is the same setContentview() we used earlier, passing it an instance of a
view subclass (in that case, a Button). The Android-built view, constructed
from our layout, is accessed from that code-generated R class. All of the
layouts are accessible under R.layout, keyed by the base name of the layout
file - res/layout/main.xml results in R.layout.main.

To access our identified widgets, use findviewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated
by Android in the R class as R.id.something (where something is the specific
widget you are seeking). Those widgets are simply subclasses of View, just
like the Button instance we created in the previous chapter.

The Rest of the Story

In the original Now demo, the button's face would show the current time,
which would reflect when the button was last pushed (or when the activity
was first shown, if the button had not yet been pushed).

Most of that logic still works, even in this revised demo (NowRedux).
However, rather than instantiating the Button in our activity's onCreate()
callback, we can reference the one from the XML layout:

package com.commonsware.android.layouts;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class NowRedux extends Activity
implements View.OnClickListener {
Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);
btn=(Button)findvViewById(R.id.button);

btn.setOnClickListener(this);
updateTime();

75

Using XML-Based Layouts

}

public void onClick(View view) {
updateTime();
}

private void updateTime() {
btn.setText(new Date().toString());
}

}

The first difference is that rather than setting the content view to be a view
we created in Java code, we set it to reference the XML layout
(setContentview(R.layout.main)). The R.java source file will be updated
when we rebuild this project to include a reference to our layout file (stored
as main.xml in our project's res/layout directory).

The other difference is that we need to get our hands on our Button
instance, for which we use the findviewById() call. Since we identified our
button as @+id/button, we can reference the button's identifier as
R.id.button. Now, with the Button instance in hand, we can set the callback
and set the label as needed.

The results look the same as with the original Now demo:

76

Using XML-Based Layouts

ChHl & 10:33PM
NowRedux

Tue Aug 19 22:32:29 GMT+00:00 2008

-l
Figure 33. The NowRedux sample activity

77

CHAPTER 9
Employing Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, etc.
Android's toolkit is no different in scope, and the basic widgets will provide
a good introduction as to how widgets work in Android activities.

Assigning Labels

The simplest widget is the label, referred to in Android as a Textview. Like
in most GUI toolkits, labels are bits of text not editable directly by users.
Typically, they are used to identify adjacent widgets (e.g., a "Name:" label
before a field where one fills in a name).

In Java, you can create a label by creating a Textview instance. More
commonly, though, you will create labels in XML layout files by adding a
Textview element to the layout, with an android:text property to set the
value of the label itself. If you need to swap labels based on certain criteria,
such as internationalization, you may wish to use a string resource
reference in the XML instead, as will be described later in this book.

Textview has numerous other properties of relevance for labels, such as:

+ android:typeface to set the typeface to use for the label (e.g.,
monospace)

+ android:textStyle to indicate that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold_italic)

79

Employing Basic Widgets

+ android:textColor to set the color of the label's text, in RGB hex
format (e.g., #FFeeee for red)

For example, in the Basic/Label project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="You were expecting something profound?"
/>

Just that layout alone, with the stub Java source provided by Android's
project builder (e.g., android create project), gives you:

Ml @ 12:56 PM

LabelDemo

Figure 34. The LabelDemo sample application

Button, Button, Who's Got the Button?

We've already seen the use of the Button widget in the previous two
chapters. As it turns out, Button is a subclass of Textview, so everything

80

Employing Basic Widgets

discussed in the preceding section in terms of formatting the face of the
button still holds.

However, Android 1.6 added a new feature for the declaration of the "on-
click” listener for a Button. In addition to the classic approach of defining
some object (such as the activity) as implementing the
View.OnClickListener interface, you can now take a somewhat simpler
approach:

+ Define some method on your Activity that holds the button that
takes a single view parameter, has a void return value, and is public

« In your layout XML, on the Button element, include the
android:onClick attribute with the name of the method you defined
in the previous step

For example, we might have a method on our Activity that looks like:

public void someMethod(View theButton) {
// do something useful here
}

Then, we could use this XML declaration for the Button itself, including
android:onClick:

<Button
android:onClick="someMethod"

/>

This is enough for Android to "wire together" the Button with the click
handler.

Fleeting Images

Android has two widgets to help you embed images in your activities:
Imageview and ImageButton. As the names suggest, they are image-based
analogues to TextVview and Button, respectively.

81

Employing Basic Widgets

Each widget takes an android:src attribute (in an XML layout) to specify
what picture to use. These usually reference a drawable resource, described
in greater detail in the chapter on resources.

ImageButton, a subclass of Imageview, mixes in the standard Button behaviors,
for responding to clicks and whatnot.

For example, take a peek at the main.xml layout from the Basic/ImageView
sample project:

<?xml version="1.0" encoding="utf-8"?>

<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/icon"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule”
/>

The result, just using the code-generated activity, is simply the image:

2| 12:59 PM

ImageViewDemo

Figure 35. The ImageViewDemo sample application

82

Employing Basic Widgets

Fields of Green. Or Other Colors.

Along with buttons and labels, fields are the third "anchor” of most GUI
toolkits. In Android, they are implemented via the EditText widget, which
is a subclass of the Textview used for labels.

Along with the standard Textview properties (e.g., android:textStyle),
EditText has many others that will be useful for you in constructing fields,
including:

+ android:autoText, to control if the field should provide automatic
spelling assistance

+ android:capitalize, to control if the field should automatically
capitalize the first letter of entered text (e.g., first name, city)

+ android:digits, to configure the field to accept only certain digits

+ android:singleLine, to control if the field is for single-line input or
multiple-line input (e.g., does <Enter> move you to the next widget
or add a newline?)

Most of those are also available from the new android:inputType attribute,
added in Android 1.5 as part of adding "soft keyboards" to Android - this
will be discussed in an upcoming chapter.

For example, from the Basic/Field project, here is an XML layout file
showing an EditText:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/field"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:singlelLine="false"
/>

Note that android:singleLine is false, so users will be able to enter in several
lines of text.

83

Employing Basic Widgets

For this project, the FieldDemo.java file populates the input field with some
prose:

package com.commonsware.android.field;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
@0Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

EditText fld=(EditText)findViewById(R.id.field);

fld.setText("Licensed under the Apache License, Version 2.0 " +
"(the \"License\"); you may not use this file " +
"except in compliance with the License. You may " +

"obtain a copy of the License at " +
"http://www.apache.org/licenses/LICENSE-2.0");

The result, once built and installed into the emulator, is:

Eh#l & 1:00 PM
FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin
compliance with the License. You
may obtain a copy of the License at
http://www.apache.org/licenses/LIC
ENSE-2.0

|
Figure 36. The FieldDemo sample application

84

Employing Basic Widgets

Another flavor of field is one that offers auto-completion, to help users
supply a value without typing in the whole text. That is provided in
Android as the AutoCompleteTextview widget, discussed in greater detail later
in this book.

Just Another Box to Check

The classic checkbox has two states: checked and unchecked. Clicking the
checkbox toggles between those states to indicate a choice (e.g., "Add rush
delivery to my order").

In Android, there is a CheckBox widget to meet this need. It has Textview as
an ancestor, so you can use TextView properties like android:textColor to
format the widget.

Within Java, you can invoke:

+ isChecked() to determine if the checkbox has been checked

+ setChecked() to force the checkbox into a checked or unchecked
state

+ toggle() to toggle the checkbox as if the user checked it
Also, you can register a listener object (in this case, an instance of

OnCheckedChangeListener) to be notified when the state of the checkbox
changes.

For example, from the Basic/CheckBox project, here is a simple checkbox
layout:

<?xml version="1.0" encoding="utf-8"?>

<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/check"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="This checkbox is: unchecked" />

85

Employing Basic Widgets

The corresponding CheckBoxDemo.java retrieves and configures the behavior
of the checkbox:

public class CheckBoxDemo extends Activity
implements CompoundButton.OnCheckedChangeListener {
CheckBox cb;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

cb=(CheckBox)findViewById(R.id.check);
cb.setOnCheckedChangeListener(this);
}

public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
if (isChecked) {
cb.setText("This checkbox is: checked");
}
else {
cb.setText("This checkbox is: unchecked");
}
}

}

Note that the activity serves as its own listener for checkbox state changes
since it implements the onCheckedChangeListener interface (via
cb.setonCheckedChangelistener(this)). The callback for the listener is
onCheckedChanged(), which receives the checkbox whose state has changed
and what the new state is. In this case, we update the text of the checkbox
to reflect what the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown
below:

86

Employing Basic Widgets

hMl & 1:38PMm

CheckBoxDemo

-This checkbox is: unchecked

Figure 37. The CheckBoxDemo sample application, with the checkbox
unchecked

Ml & 1:38PMm

CheckBoxDemo

This checkbox is: checked

Figure 38. The same application, now with the checkbox checked

87

Employing Basic Widgets

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android's
radio buttons are two-state, like checkboxes, but can be grouped such that
only one radio button in the group can be checked at any time.

Like checkBox, RadioButton inherits from CompoundButton, which in turn
inherits from Textview. Hence, all the standard Textview properties for font
face, style, color, etc. are available for controlling the look of radio buttons.
Similarly, you can call isChecked() on a RadioButton to see if it is selected,
toggle() to select it, and so on, like you can with a checkBox.

Most times, you will want to put your RadioButton widgets inside of a
RadioGroup. The RadioGroup indicates a set of radio buttons whose state is
tied, meaning only one button out of the group can be selected at any time.
If you assign an android:id to your RadioGroup in your XML layout, you can
access the group from your Java code and invoke:

« check() to check a specific radio button via its ID (e.g.,
gr‘oup.check(R.id.r‘adiol))

« clearcheck() to clear all radio buttons, so none in the group are
checked

+ getCheckedRadioButtonId() to get the ID of the currently-checked
radio button (or -1 if none are checked)

Note that the mutual-exclusion feature of RadioGroup only applies to
RadioButton widgets that are immediate children of the RadioGroup. You
cannot have other containers - discussed in the next chapter - between the
RadioGroup and its RadioButton widgets.

For example, from the Basic/RadioButton sample application, here is an
XML layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>

<RadioGroup
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”
android:layout_width="fill_parent"

88

Employing Basic Widgets

android:layout_height="fill_parent”
>
<RadioButton android:id="@+id/radiol"
android:layout_width="wrap_content”
android:layout_height="wrap_content"
android:text="Rock" />

<RadioButton android:id="@+id/radio2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Scissors" />

<RadioButton android:id="@+id/radio3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you
get:

EhMl @ 1:39PMm

RadioButtonDemo

. Rock
. Scissors
. Paper

Figure 39. The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked
at the outset. To preset one of the radio buttons to be checked, use either
setChecked() on the RadioButton or check() on the RadioGroup from within
your onCreate() callback in your activity.

89

Employing Basic Widgets

It's Quite a View

All widgets, including the ones shown above, extend view, and as such give
all widgets an array of useful properties and methods beyond those already
described.

Padding

Widgets have a minimum size, one that may be influenced by what is
inside of them. So, for example, a Button will expand to accommodate the
size of its caption. You can control this size using padding. Adding padding
will increase the space between the contents (e.g., the caption of a Button)
and the edges of the widget.

Padding can be set once in XML for all four sides (android:padding) or on a
per-side basis (android:paddingLeft, etc.). Padding can also be set in Java via
the setPadding() method.

The value of any of these is a dimension - a combination of a unit of
measure and a count. So, 5px is 5 pixels, 1edip is 10 density-independent
pixels, or 2mm is 2 millimeters. We will examine dimension in greater detail
in an upcoming chapter.

Other Useful Properties

In addition to those presented in this chapter and in the next chapter, some
of the properties on view most likely to be used include:

+ android:visibility, which controls whether the widget is initially
visible

* android:nextFocusDown, android:nextFocuslLeft,
android:nextFocusRight, and android:nextFocusUp, which control the
focus order if the user uses the D-pad, trackball, or similar pointing
device

20

Employing Basic Widgets

+ android:contentDescription, which is roughly equivalent to the alt
attribute on an HTML tag, and is used by accessibility tools to
help people who cannot see the screen navigate the application

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see
if it is enabled via isEnabled(). One common use pattern for this is to
disable some widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as
mentioned above, to ensure the proper widget has the focus once your
disabling operation is complete.

To help navigate the tree of widgets and containers that make up an
activity's overall view, you can use:

« getParent() to find the parent widget or container
+ findviewById() to find a child widget with a certain ID

+ getRootview() to get the root of the tree (e.g., what you provided to
the activity via setContentview())

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a graphic image to serve as the
background). Others, like android:textColor on Textview (and subclasses)
can take a ColorStateList, including via the Java setter (in this case,
setTextColor‘()).

A ColorstateList allows you to specify different colors for different
conditions. For example, when you get to selection widgets in an upcoming
chapter, you will see how a Textview has a different text color when it is the
selected item in a list compared to when it is in the list but not selected.
This is handled via the default colorStateList associated with Textview.

91

Employing Basic Widgets

If you wish to change the color of a Textview widget in Java code, you have
two main choices:

1. Use colorStatelList.valueof(), which returns a ColorStateList in
which all states are considered to have the same color, which you
supply as the parameter to the valueof() method. This is the Java
equivalent of the android:textColor approach, to make the Textview
always a specific color regardless of circumstances.

2. Create a ColorstateList with different values for different states,
either via the constructor or via an XML drawable resource, a
concept discussed in a later chapter

92

CHAPTER 10
Working with Containers

Containers pour a collection of widgets (and possibly child containers) into
specific structures you like. If you want a form with labels on the left and
fields on the right, you will need a container. If you want OK and Cancel
buttons to be beneath the rest of the form, next to one another, and flush
to right side of the screen, you will need a container. Just from a pure XML
perspective, if you have multiple widgets (beyond RadioButton widgets in a
RadioGroup), you will need a container just to have a root element to place
the widgets inside.

Most GUI toolkits have some notion of layout management, frequently
organized into containers. In Java/Swing, for example, you have layout
managers like BoxLayout and containers that use them (e.g., Box). Some
toolkits stick strictly to the box model, such as XUL and Flex, figuring that
any desired layout can be achieved through the right combination of nested
boxes.

Android, through LinearLayout, also offers a "box" model, but in addition
supports a range of containers providing different layout rules. In this
chapter, we will look at three commonly-used containers: LinearLayout (the
box model), RelativeLayout (a rule-based model), and TableLayout (the grid
model), along with Scrollview, a container designed to assist with
implementing scrolling containers.

93

Working with Containers

Thinking Linearly

As noted above, LinearLayout is a box model — widgets or child containers
are lined up in a column or row, one after the next. This works similarly to
FlowLayout in Java/Swing, vbox and hbox in Flex and XUL, etc.

Flex and XUL use the box as their primary unit of layout. If you want, you
can use LinearLayout in much the same way, eschewing some of the other
containers. Getting the visual representation you want is mostly a matter of
identifying where boxes should nest and what properties those boxes
should have, such as alignment vis-a-vis other boxes.

Concepts and Properties

To configure a LinearLayout, you have five main areas of control besides the
container's contents: the orientation, the fill model, the weight, the gravity,
and the padding.

Orientation

Orientation indicates whether the LinearLayout represents a row or a
column. Just add the android:orientation property to your LinearLayout
element in your XML layout, setting the value to be horizontal for a row or
vertical for a column.

The orientation can be modified at runtime by invoking setorientation()
on the LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model

Let's imagine a row of widgets, such as a pair of radio buttons. These
widgets have a "natural” size based on their text. Their combined sizes
probably do not exactly match the width of the Android device's screen -
particularly since screens come in various sizes. We then have the issue of
what to do with the remaining space.

94

Working with Containers

All widgets inside a LinearLayout must supply android:layout_width and
android:layout_height properties to help address this issue. These
properties' values have three flavors:

« You can provide a specific dimension, such as 125dip to indicate the
widget should take up exactly a certain size

« You can provide wrap_content, which means the widget should fill
up its natural space, unless that is too big, in which case Android
can use word-wrap as needed to make it fit

« You can provide fill_parent, which means the widget should fill up
all available space in its enclosing container, after all other widgets
are taken care of

The latter two flavors are the most common, as they are independent of
screen size, allowing Android to adjust your view to fit the available space.

NOTE: In API level 8 (Android 2.2), fill _parent was renamed to
match_parent, for unknown reasons. You can still use fill_parent, as it will
be supported for the foreseeable future. However, at such point in time as
you are only supporting API level 8 or higher (eg,
android:minSdkversion="8" in your manifest), you should probably switch
over to match_parent.

Weight

But, what happens if we have two widgets that should split the available
free space? For example, suppose we have two multi-line fields in a column,
and we want them to take up the remaining space in the column after all
other widgets have been allocated their space.

To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns) to fill_parent, you must also set
android:layout_weight. This property indicates what proportion of the free
space should go to that widget. If you set android:layout_weight to be the
same non-zero value for a pair of widgets (e.g., 1), the free space will be
split evenly between them. If you set it to be 1 for one widget and 2 for

95

Working with Containers

another widget, the second widget will use up twice the free space that the
first widget does. And so on.

The weight for a widget is zero by default.

Another pattern for using weights is if you want to allocate sizes on a
percentage basis. To use this technique for, say, a horizontal layout:

« Set all the android:layout_width values to be o for the widgets in the
layout

« Set the android:layout_weight values to be the desired percentage
size for each widget in the layout

« Make sure all those weights add up to 100

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you
create a row of widgets via a horizontal LinearLayout, the row will start flush
on the left side of the screen.

If that is not what you want, you need to specify a gravity. Using
android:layout_gravity on a widget (or calling setGravity() at runtime on
the widget's Java object), you can tell the widget and its container how to
align it vis-a-vis the screen.

For a column of widgets, common gravity values are 1left,
center_horizontal, and right for left-aligned, centered, and right-aligned
widgets respectively.

For a row of widgets, the default is for them to be aligned so their texts are
aligned on the baseline (the invisible line that letters seem to "sit on"),
though you may wish to specify a gravity of center_vertical to center the
widgets along the row's vertical midpoint.

96

Working with Containers

Margins

By default, widgets are tightly packed, one next to the other. You can
control this via the use of margins, a concept that is reminiscent of the
padding described in a previous chapter.

The difference between padding and margins comes in terms of the
background. Widgets with a transparent background - like the default look
of a Textview — padding and margins have similar visual effect, increasing
the space between the widget and adjacent widgets. However, widgets with
a non-transparent background - like a Button - padding is considered
inside the background while margins are outside. In other words, adding
padding will increase the space between the contents (e.g., the caption of a
Button) and the edges, while adding margin increases the empty space
between the edges and adjacent widgets.

Margins can be set in XML, either on a per-side basis (e.g,
android:layout_marginTop) or on all sides via android:layout_margin. Once
again, the value of any of these is a dimension - a combination of a unit of
measure and a count, such as 5px for 5 pixels.

Example

Let's look at an example (Containers/Linear) that shows LinearLayout
properties set both in the XML layout file and at runtime.

Here is the layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<RadioGroup android:id="@+id/orientation”
android:orientation="horizontal"
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:padding="5dip">

97

Working with Containers

<RadioButton
android:id="@+id/horizontal”
android:text="horizontal" />
<RadioButton
android:id="@+id/vertical"
android:text="vertical" />
</RadioGroup>
<RadioGroup android:id="@+id/gravity"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="5dip">
<RadioButton
android:id="@+id/left"
android:text="1left" />
<RadioButton
android:id="@+id/center"
android:text="center" />
<RadioButton
android:id="@+id/right"
android:text="right" />
</RadioGroup>
</LinearlLayout>

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup
is a subclass of LinearLayout, so our example demonstrates nested boxes as
if they were all LinearLayout containers.

The top RadioGroup sets up a row (android:orientation = "horizontal") of
RadioButton widgets. The RadioGroup has 5dip of padding on all sides,
separating it from the other RadioGroup, where dip stands for density-
independent pixels (think of them as ordinary pixels for now - we will get
into the distinction later in the book). The width and height are both set to
wrap_content, so the radio buttons will only take up the space that they
need.

The bottom RadioGroup is a column (android:orientation = "vertical") of
three RadioButton widgets. Again, we have sdip of padding on all sides and a
"natural" height (android:layout_height = "wrap_content"). However, we
have set android:layout_width to be fill_parent, meaning the column of
radio buttons "claims" the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java
code:

98

Working with Containers

package com.commonsware.android.linear;

import android.app.Activity;

import android.os.Bundle;

import android.view.Gravity;

import android.text.TextWatcher;
import android.widget.LinearlLayout;
import android.widget.RadioGroup;
import android.widget.EditText;

public class LinearLayoutDemo extends Activity
implements RadioGroup.OnCheckedChangelListener {
RadioGroup orientation;
RadioGroup gravity;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

orientation=(RadioGroup)findViewById(R.id.orientation);
orientation.setOnCheckedChangeListener(this);
gravity=(RadioGroup)findViewById(R.id.gravity);
gravity.setOnCheckedChangeListener(this);

}

public void onCheckedChanged(RadioGroup group, int checkedId) {
switch (checkedId) {
case R.id.horizontal:
orientation.setOrientation(LinearLayout.HORIZONTAL);
break;

case R.id.vertical:
orientation.setOrientation(LinearLayout.VERTICAL);
break;

case R.id.left:
gravity.setGravity(Gravity.LEFT);
break;

case R.id.center:
gravity.setGravity(Gravity.CENTER_HORIZONTAL);
break;

case R.id.right:
gravity.setGravity(Gravity.RIGHT);
break;

In onCreate(), we look up our two RadioGroup containers and register a
listener on each, so we are notified when the radio buttons change state

929

Working with Containers

(setonCheckedChangelListener(this)). Since the activity implements
OnCheckedChangeListener, the activity itself is the listener.

In onCheckedChanged() (the callback for the listener), we see which
RadioButton had a state change. Based on the clicked-upon item, we adjust
either the orientation of the first LinearLayout or the gravity of the second
LinearLayout.

Here is the result when it is first launched inside the emulator:

Chif] & 12:22 am

LinearLayoutDemo

. horizontal .vertical

@ -
. center
. right

Figure 40. The LinearLayoutDemo sample application, as initially launched

If we toggle on the "vertical" radio button, the top RadioGroup adjusts to
match:

100

Working with Containers

Chll @ 12:22am

LinearLayoutDemo

. horizontal
°vertical

0
. center

. right

Figure 41. The same application, with the vertical radio button selected

If we toggle the "center" or "right" radio buttons, the bottom RadioGroup
adjusts to match:

@ 12:23 AM

LinearLayoutDemo

. horizontal
°vertical

0.
e center

. right

Figure 42. The same application, with the vertical and center radio buttons
selected

101

Working with Containers

Chl & 12:23 AMm

LinearLayoutDemo

. horizontal
1"venkm

@ -
. center
‘!Iﬁgm

Figure 43. The same application, with the vertical and right radio buttons
selected

The Box Model

As noted earlier in this chapter, some GUI frameworks treat everything as
boxes - what Android calls LinearLayout containers. In Flex and XUL, for
example, you create boxes and indicate how big they should be, as a
percentage of the available space, then you put widgets in the boxes. A
similar pattern exists in Android for LinearLayout, as is demonstrated in the
Containers\LinearPercent project.

Here, we have a layout XML file that contains a vertical LinearLayout
wrapping three Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<Button
android:text="Fifty Percent"
android:layout_width="fill_parent"

102

Working with Containers

android
/>
<Button
android
android
android

/>
<Button

android

/>

android:

android:
:layout_width="fill_parent"
android:
android:

layout_height="0dip"

:layout_weight="50"

:text="Thirty Percent"
:layout_width="fill_parent"
:layout_height="0edip"
android:

layout_weight="30"

text="Twenty Percent”

layout_height="0dip"
layout_weight="20"

</LinearLayout>

Each of the three widgets will take up a certain percentage of the vertical
space for the LinearLayout. Since the LinearLayout is set to fill the screen,
this means that the three widgets will divide up the screen based upon their

requested percentages.

To request a percentage, each Button:

« Sets its android:layout_height to be edip (note: we use height here
because it is a vertical LinearLayout we are sub-dividing)

+ Sets its android:layout_weight to be the desired percentage (e.g.,

android:layout_weight="50"

So long as the weights sum to 109, as they do in this case, you will get your

desired breakdown by percentage:

103

Working with Containers

5l @ 9:29am

Fifty Percent

Thirty Percent

Twenty Percent

Figure 44. A LinearLayout split among three Buttons by percentage

All Things Are Relative

RelativeLayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You
can place Widget X below and to the left of Widget Y, or have Widget Z's
bottom edge align with the bottom of the container, and so on.

This is reminiscent of James Elliot's RelativeLayout for use with Java/Swing.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an
XML layout file, plus ways to indicate the relative positions of those
widgets.

104

http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html

Working with Containers

Positions Relative to Container

The easiest relations to set up are tying a widget's position to that of its
container:

+ android:layout_alignParentTop says the widget's top should align
with the top of the container

+ android:layout_alignParentBottom says the widget's bottom should
align with the bottom of the container

+ android:layout_alignParentLeft says the widget's left side should
align with the left side of the container

+ android:layout_alignParentRight says the widget's right side should
align with the right side of the container

+ android:layout_centerHorizontal says the widget should be
positioned horizontally at the center of the container

+ android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

+ android:layout_centerInParent says the widget should be positioned
both horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

Note that the padding of the widget is taken into account when performing
these various alignments. The alignments are based on the widget's overall
cell (combination of its natural space plus the padding).

Relative Notation in Properties
The remaining properties of relevance to RelativeLayout take as a value the
identity of a widget in the container. To do this:

1. Put identifiers (android:id attributes) on all elements that you will
need to address

2. Reference other widgets using the same identifier value

105

Working with Containers

The first occurrence of an id value should have the plus sign
(@+id/widget_a); the second and subsequent times that id value is used in
the layout file should drop the plus sign (@id/widget_a). This allows the
build tools to better help you catch typos in your widget id values - if you
do not have a plus sign for a widget id value that has not been seen before,
that will be caught at compile time.

For example, if Widget A is identified as @+id/widget_a, Widget B can refer
to Widget A in one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

There are four properties that control position of a widget vis a vis other
widgets:

+ android:layout_above indicates that the widget should be placed
above the widget referenced in the property

+ android:layout_below indicates that the widget should be placed
below the widget referenced in the property

+ android:layout_toLeftof indicates that the widget should be placed
to the left of the widget referenced in the property

+ android:layout_toRightof indicates that the widget should be placed
to the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one
widget's alignment relative to another:

+ android:layout_alignTop indicates that the widget's top should be
aligned with the top of the widget referenced in the property

+ android:layout_alignBottom indicates that the widget's bottom
should be aligned with the bottom of the widget referenced in the
property

+ android:layout_alignLeft indicates that the widget's left should be
aligned with the left of the widget referenced in the property

106

Working with Containers

« android:layout_alignRight indicates that the widget's right should
be aligned with the right of the widget referenced in the property

+ android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned (where the "baseline" is that invisible line
that text appears to sit on)

The last one is useful for aligning labels and fields so that the text appears
"natural”. Since fields have a box around them and labels do not,
android:layout_alignTop would align the top of the field's box with the top
of the label, which will cause the text of the label to be higher on-screen
than the text entered into the field.

So, if we want Widget B to be positioned to the right of Widget A, in the
XML element for Widget B, we need to include android:layout_toRightOf =
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

Order of Evaluation

It used to be that Android would use a single pass to process
RelativeLayout-defined rules. That meant you could not reference a widget
(e.g., via android:layout_above) until it had been declared in the XML. This
made defining some layouts a bit complicated. Starting in Android 1.6,
Android uses two passes to process the rules, so you can now safely have
forward references to as-yet-undefined widgets.

Example

With all that in mind, let's examine a typical "form" with a field, a label,
plus a pair of buttons labeled "OK" and "Cancel".

Here is the XML layout, pulled from the Ccontainers/Relative sample
project:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"

107

Working with Containers

android:layout_width="fill_parent"

android:layout_height="wrap_content">

<TextView android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="URL:"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentLeft="true"/>

<EditText
android:id="@id/entry"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_toRightOf="@id/label"
android:layout_alignParentTop="true"/>

<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/entry"
android:layout_alignRight="@id/entry"
android:text="0K" />

<Button
android:id="@+id/cancel”
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:layout_toLeftOf="@id/ok"
android:layout_alignTop="@id/ok"
android:text="Cancel" />

</RelativelLayout>

First, we open up the RelativeLayout. In this case, we want to use the full
width of the screen (android:layout_width = "fill_parent") and only as
much height as we need (android:layout_height = "wrap_content").

Next, we define the label as a Textview. We indicate that we want its left
edge aligned with the left edge of the Relativelayout
(android:layout_alignParentLeft="true") and that we want its baseline
aligned with the baseline of the yet-to-be-defined EditText. Since the
EditText has not been declared yet, we use the + sign in the ID
(andr‘oid:layout_alignBaseline="@+id/entr‘y").

After that, we add in the field as an EditText. We want the field to be to the
right of the label, have the field be aligned with the top of the
RelativeLayout, and for the field to take up the rest of this "row" in the
layout. Those are handled by three properties:

* android:layout_toRightOf = "@id/label™

108

Working with Containers

* android:layout_alignParentTop = "true"

* android:layout_width = "fill_parent”

Then, the OK button is set to be below the field (android:layout_below =
"@id/entry"”) and have its right side align with the right side of the field
(android:layout_alignRight = "@id/entry"). The Cancel button is set to be
to the left of the OK button (android:layout_toLeft = "@id/ok") and have its
top aligned with the OK button (android:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

ChMl @ 12:34 AM

RelativeLayoutDemo

J:‘L:_
Cancel m

Figure 45. The RelativeLayoutDemo sample application

Overlap

RelativeLayout also has a feature that LinearLayout lacks - the ability to
have widgets overlap one another. Later children of a RelativeLayout are
"higher in the Z axis" than are earlier children, meaning that later children
will overlap earlier children if they are set up to occupy the same space in
the layout.

109

Working with Containers

This will be clearer with an example. Here is a layout, from
Containers/RelativeOverlap, with a RelativeLayout holding two Button
widgets:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<Button
android:text="I AM BIG"
android:textSize="120dip"
android:textStyle="bold"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>
<Button
android:text="I am small"
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:layout_centerInParent="true"
/>
</RelativelLayout>

The first Button is set to fill the screen. The second Button is set to be
centered inside the parent, but only take up as much space as is needed for
its caption. Hence, the second Button will appear to "float" over the first
Button:

110

Working with Containers

il @ 10:11 am

Tam small

Figure 46. The RelativeOverlap sample application

Both Button widgets can still be clicked, though clicking on the smaller
Button does not also click the bigger Button. Your clicks will be handled by
the widget on top in the case of an overlap like this.

Tabula Rasa

If you like HTML tables, spreadsheet grids, and the like, you will like
Android's TableLayout - it allows you to position your widgets in a grid to
your specifications. You control the number of rows and columns, which
columns might shrink or stretch to accommodate their contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the
overall behavior of the container, with the widgets themselves poured into
one or more TableRow containers, one per row in the grid.

111

Working with Containers

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and
columns, plus how to handle widgets that live outside of rows.

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly how
many rows appear in the table.

The number of columns are determined by Android; you control the
number of columns in an indirect fashion.

First, there will be at least one column per widget in your longest row. So if
you have three rows, one with two widgets, one with three widgets, and one
with four widgets, there will be at least four columns.

However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget
spans. This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow>
<TextView android:text="URL:" />
<EditText
android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>

In the above XML layout fragment, the field spans three columns.

Ordinarily, widgets are put into the first available column. In the above
fragment, the label would go in the first column (column o, as columns are
counted starting from o), and the field would go into a spanned set of three
columns (columns 1 through 3). However, you can put a widget into a
different column via the android:layout_column property, specifying the e-
based column the widget belongs to:

112

Working with Containers

<TableRow>
<Button
android:id="@+id/cancel”
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok" android:text="OK" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third
column (column 2). The OK button then goes into the next available
column, which is the fourth column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate
children. However, it is possible to put other widgets in between rows. For
those widgets, TableLayout behaves a bit like LinearLayout with vertical
orientation. The widgets automatically have their width set to fill_parent,
so they will fill the same space that the longest row does.

One pattern for this is to use a plain view as a divider (e.g., <View
android:layout_height = "2dip" android:background = "#@00OFF" /> as a
two-pixel-high blue bar across the width of the table).

Stretch, Shrink, and Collapse

By default, each column will be sized according to the "natural” size of the
widest widget in that column (taking spanned columns into account).
Sometimes, though, that does not work out very well, and you need more
control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The
value should be a single column number (again, e-based) or a comma-
delimited list of column numbers. Those columns will be stretched to take
up any available space yet on the row. This helps if your content is narrower
than the available space.

113

Working with Containers

Conversely, you can place a android:shrinkColumns property on the
TableLayout. Again, this should be a single column number or a comma-
delimited list of column numbers. The columns listed in this property will
try to word-wrap their contents to reduce the effective width of the column
- by default, widgets are not word-wrapped. This helps if you have columns
with potentially wordy content that might cause some columns to be
pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the
TableLayout, again with a column number or comma-delimited list of
column numbers. These columns will start out "collapsed”, meaning they
will be part of the table information but will be invisible. Programmatically,
you can collapse and un-collapse columns by calling setColumnCollapsed()
on the TableLayout. You might use this to allow users to control which
columns are of importance to them and should be shown versus which ones
are less important and can be hidden.

You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().

Example

The XML layout fragments shown above, when combined, give us a
TableLayout rendition of the "form" we created for RelativeLayout, with the
addition of a divider line between the label/field and the two buttons
(found in the containers/Table demo):

<?xml version="1.0" encoding="utf-8"?>
<TablelLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:stretchColumns="1">
<TableRow>
<TextView
android:text="URL:" />
<EditText android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>
<View
android:layout_height="2dip"

114

Working with Containers

android:background="#0000FF" />
<TableRow>
<Button android:id="@+id/cancel”
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok"
android:text="0K" />
</TableRow>
</TablelLayout>

When compiled against the generated Java code and run on the emulator,
we get:

M@ 12:35 AM

TableLayoutDemo

Cancel m

Figure 47. The TableLayoutDemo sample application

Scrollwork

Phone screens tend to be small, which requires developers to use some
tricks to present a lot of information in the limited available space. One
trick for doing this is to use scrolling, so only part of the information is
visible at one time, the rest available via scrolling up or down.

Scrollview is a container that provides scrolling for its contents. You can
take a layout that might be too big for some screens, wrap it in a Scrollview,

115

Working with Containers

and still use your existing layout logic. It just so happens that the user can
only see part of your layout at one time, the rest available via scrolling.

For example, here is a Scrollview used in an XML layout file (from the
Containers/Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<TablelLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="0">
<TableRow>
<View
android:layout_height="80dip"
android:background="#000000" />
<TextView android:text="#000000"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#440000" />
<TextView android:text="#440000"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical” />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#884400" />
<TextView android:text="#884400"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#aa8844" />
<TextView android:text="#aa8844"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#ffaa88" />

116

Working with Containers

<TextView android:text="#ffaa88"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#ffffaa" />
<TextView android:text="#ffffaa"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#ffffff" />
<TextView android:text="#ffffff"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical” />
</TableRow>
</TableLayout>
</ScrollView>

Without the scrollview, the table would take up at least 560 pixels (7 rows
at 8o pixels each, based on the view declarations). There may be some
devices with screens capable of showing that much information, but many
will be smaller. The scrollview lets us keep the table as-is, but only present
part of it at a time.

On the stock Android emulator, when the activity is first viewed, you see:

117

Working with Containers

ChMl @ 12:35 AM

ScrollViewDemo

Figure 48. The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the
up/down buttons on the directional pad, you can scroll up and down to see
the remaining rows. Also note how the right side of the content gets
clipped by the scrollbar - be sure to put some padding on that side or
otherwise ensure your own content does not get clipped in that fashion.

Android 1.5 introduced HorizontalScrollview, which works like Scrollview...
just horizontally. This would be good for forms that might be too wide
rather than too tall. Note that neither Scrollview nor HorizontalScrollView
will give you bi-directional scrolling - you have to choose vertical or
horizontal.

Also, note that you cannot put scrollable items into a Scrollview. For
example, a Listview widget — which we will see in an upcoming chapter -
already knows how to scroll. You do not need to put a Listview in a
Scrollview, and if you were to try, it would not work very well.

118

CHAPTER 11
The Input Method Framework

Android 1.5 introduced the input method framework (IMF), which is
commonly referred to as "soft keyboards". However, the "soft keyboard"
term is not necessarily accurate, as IMF could be used for handwriting
recognition or other means of accepting text input via the screen.

Keyboards, Hard and Soft

Some Android devices have a hardware keyboard that is visible some of the
time (when it is slid out). A few Android devices have a hardware keyboard
that is always visible (so-called "bar" or "slab" phones). Most Android
devices, though, have no hardware keyboard at all.

The IMF handles all of these scenarios. In short, if there is no hardware
keyboard, an input method editor (IME) will be available to the user when
they tap on an enabled EditText.

This requires no code changes to your application...if the default
functionality of the IME is what you want. Fortunately, Android is fairly
smart about guessing what you want, so it may be you can just test with the
IME but otherwise make no specific code changes.

Of course, the keyboard may not quite behave how you would like. For
example, in the Basic/Field sample project, the FieldDemo activity has the
IME overlaying the multiple-line EditText:

119

The Input Method Framework

T | 12:35Pm

FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin

compliance with the License. You

qw e r ty ui
a s df gh j k|l

DEL

£ 'z x c v binim

P

Figure 49. The input method editor, as seen in the FieldDemo sample
application

It would be nice to have more control over how this appears, and for other
behavior of the IME. Fortunately, the framework as a whole gives you many
options for this, as is described over the bulk of this chapter.

Tailored To Your Needs

Android 1.1 and earlier offered many attributes on EditText widgets to
control their style of input, such as android:password to indicate a field
should be for password entry (shrouding the password keystrokes from
prying eyes). Starting in Android 1.5, with the IMF, many of these have been
combined into a single android: inputType attribute.

The android:inputType attribute takes a class plus modifiers, in a pipe-
delimited list (where | is the pipe character). The class generally describes
what the user is allowed to input, and this determines the basic set of keys
available on the soft keyboard. The available classes are:

« text (the default)

. number

120

The Input Method Framework

* phone

. datetime

. date

. time

Many of these classes offer one or more modifiers, to further refine what
the user will be entering. To help explain those, take a look at the
res/layout/main.xml file from the InputMethod/IMEDemol project:

>
<TableRow>
<TextView

/>
<EditText
/>
</TableRow>
<TableRow>
<TextView

/>
<EditText

/>
</TableRow>
<TableRow>

<TextView

/>
<EditText

/>
</TableRow>
<TableRow>

<TextView

/>
<EditText

/>
</TableRow>
<TableRow>

<TextView

/>

<?xml version="1.0" encoding="utf-8"?>

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:stretchColumns="1"

android:

android:

android:

android:

android:

android:

android:

android:

text="No special rules:"

text="Email address:"

inputType="text|textEmailAddress"

text="Signed decimal number:"

inputType="number |numberSigned|numberDecimal"

text="Date:"

inputType="date"

text="Multi-line text:"

121

The Input Method Framework

<EditText
android:inputType="text|textMultilLine|textAutoCorrect"
android:minLines="3"
android:gravity="top"
/>
</TableRow>
</TablelLayout>

Here, you will see a TableLayout containing five rows, each demonstrating a
slightly different flavor of EditText:

1.

One has no attributes at all on the EditText, meaning you get a plain
text entry field

One has android:inputType = "text|textEmailAddress", meaning it is
text entry, but specifically seeks an email address

One allows for signed decimal numeric input, via android:inputType
= "number|numberSigned|numberDecimal”

One is set up to allow for data entry of a date (android:inputType =
"date")

The last allows for multi-line input with auto-correction of probable
spelling errors (android:inputType = "text|textMultiline|
textAutoCor‘r‘ect")

The class and modifiers tailor the keyboard. So, a plain text entry field
results in a plain soft keyboard:

122

The Input Method Framework

N & 9:19 Am

IMEDemo1

N clal rules:
Email a

Signed decimal number:

qw e r t yilu
ais d f ghij

DEL

£ 'z x c v binim

!
Figure 50. A standard input method editor (a.k.a., soft keyboard)

An email address field might put the @ symbol on the soft keyboard, at the
cost of a smaller spacebar:

qwe r t yilu

a s df gh/j kil

2 'z x cvbnmcax

(@] . Next

—_

Figure 51. The input method editor for email addresses

123

The Input Method Framework

Note, though, that this behavior is specific to the input method editor.
Some editors might put an @ sign on the primary keyboard for an email
field. Some might put a ".com" button on the primary keyboard. Some
might not react at all. It is up to the implementation of the input method
editor - all you can do is supply the hint.

Numbers and dates restrict the keys to numeric keys, plus a set of symbols
that may or may not be valid on a given field:

BN 9:19 Am

189 £21 131 144 £S5 64 7 F81 SH RO

@ #$ % &[* - +[(])

2 AN e ke
Figure 52. The input method editor for signed decimal numbers
And so on.

By choosing the appropriate android:inputType, you can give the user a soft
keyboard that best suits what it is they should be entering.

Tell Android Where It Can Go

You may have noticed a subtle difference between the first and second
input method editors, beyond the addition of the @ key. If you look in the

124

The Input Method Framework

lower-right corner of the soft keyboard, the second field's editor has a
"Next" button, while the first field's editor has a newline button.

This points out two things:

1. EditText widgets are multi-line by default if you do not specify
android:inputType

2. You can control what goes on with that lower-right-hand button,
called the accessory button

By default, on an EditText where you have specified android:inputType, the
accessory button will be "Next", moving you to the next EditText in
sequence, or "Done", if you are on the last EditText on the screen. You can
manually stipulate what the accessory button will be labeled via the
android:imeOptions attribute. For example, in the res/layout/main.xml from
InputMethod/IMEDemo2, you will see an augmented version of the previous
example, where two input fields specify what their accessory button should
look like:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<TablelLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="1"
>
<TableRow>
<TextView
android:text="No special rules:
/>
<EditText
/>
</TableRow>
<TableRow>
<TextView
android:text="Email address:"
/>
<EditText
android:inputType="text|textEmailAddress"
android:imeOptions="actionSend"
/>
</TableRow>
<TableRow>

125

The Input Method Framework

<TextView
android:text="Signed decimal number:"
/>
<EditText
android:inputType="number |numberSigned|numberDecimal"
android:imeOptions="actionDone"
/>
</TableRow>
<TableRow>
<TextView
android:text="Date:"
/>
<EditText
android:inputType="date"
/>
</TableRow>
<TableRow>
<TextView
android:text="Multi-line text:"
/>
<EditText
android:inputType="text|textMultilLine|textAutoCorrect"
android:minLines="3"
android:gravity="top"
/>
</TableRow>
</TablelLayout>
</ScrollView>

Here, we attach a "Send" action to the accessory button for the email
address (android:imeOptions = "actionSend"), and the "Done" action on the
middle field (android:imeOptions = "actionDone").

By default, "Next" will move the focus to the next editText and "Done" will
close up the input method editor. However, for those, or for any other ones
like "Send", you can use setOnEditorActionListener() on EditText
(technically, on the Textview superclass) to get control when the accessory
button is clicked or the user presses the <enter> key. You are provided with
a flag indicating the desired action (e.g., IME_ACTION_SEND), and you can then
do something to handle that request (e.g., send an email to the supplied
email address).

126

The Input Method Framework

Fitting In

You will notice that the IMEDemo2 layout shown above has another difference
from its IMEDemol predecessor: the use of a Scrollview container wrapping
the TableLayout. This ties into another level of control you have over the
input method editors: what happens to your activity's own layout when the
input method editor appears?

There are three possibilities, depending on circumstances:

« Android can "pan" your activity, effectively sliding the whole layout
up to accommodate the input method editor, or overlaying your
layout, depending on whether the EditText being edited is at the top
or bottom. This has the effect of hiding some portion of your Ul

« Android can resize your activity, effectively causing it to shrink to a
smaller screen dimension, allowing the input method editor to sit
below the activity itself. This is great when the layout can readily be
shrunk (e.g., it is dominated by a list or multi-line input field that
does not need the whole screen to be functional).

« In landscape mode, Android may display the input method editor
full-screen, obscuring your entire activity. This allows for a bigger
keyboard and generally easier data entry.

Android controls the full-screen option purely on its own. And, by default,
Android will choose between pan and resize modes depending on what
your layout looks like. If you want to specifically choose between pan and
resize, you can do so via an android:windowSoftInputMode attribute on the
<activity> element in your AndroidManifest.xml file. For example, here is
the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.imf.two" android:versionCode="1"
android:versionName="1.0">
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".IMEDemo2" android:label="@string/app_name"
android:windowSoftInputMode="adjustResize">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>

127

The Input Method Framework

</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Because we specified resize, Android will shrink our layout to
accommodate the input method editor. With the Sscrollview in place, this
means the scroll bar will appear as needed:

Email adt

qwe r t 'y ui

a s df gh j kil

Lz x c v bnma

.

Figure 53. The shrunken, scrollable layout
Jane, Stop This Crazy Thing!

Sometimes, you need the input method editor to just go away. For example,
if you make the action button be "Search", the user tapping that button will
not automatically hide the editor.

To hide the editor, you will need to make a call to the InputMethodManager, a
system service that controls these input method editors:

128

The Input Method Framework

InputMethodManager
mgr=(InputMethodManager)getSystemService (INPUT_METHOD_SERVICE);

mgr.hideSoftInputFromWindow(fld.getWindowToken(), 0);

(where f1d is the EditText whose input method editor you want to hide)

This will always close the input method editor. However, bear in mind that
there are two ways for a user to have opened that input method editor in
the first place:

1. If their device does not have a hardware keyboard exposed, and
they tap on the EditText, the input method editor should appear

2. If they previously dismissed the editor, or if they are using the
editor for a widget that does not normally pop one up (e.g.,
Listview), and they long-tap on the MENU button, the input

method editor should appear

If you only want to close the input method editor for the first scenario, but
not the second, use InputMethodManager.HIDE_IMPLICIT_ONLY as a flag for the
second parameter to your call to hideSoftInputFromWindow(), instead of the o
shown in the previous example.

129

CHAPTER 12
Using Selection Widgets

Back in the chapter on input method editors, you saw how fields could have
constraints placed upon them to limit possible input, such as numeric-only
or phone-number-only. These sorts of constraints help users "get it right”
when entering information, particularly on a mobile device with cramped
keyboards.

Of course, the ultimate in constrained input is to select a choice from a set
of items, such as the radio buttons seen earlier. Classic UI toolkits have
listboxes, comboboxes, drop-down lists, and the like for that very purpose.
Android has many of the same sorts of widgets, plus others of particular
interest for mobile devices (e.g., the Gallery for examining saved photos).

Moreover, Android offers a flexible framework for determining what
choices are available in these widgets. Specifically, Android offers a
framework of data adapters that provide a common interface to selection
lists ranging from static arrays to database contents. Selection views —
widgets for presenting lists of choices - are handed an adapter to supply the
actual choices.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate
APIs. More specifically, in Android's case, adapters provide a common
interface to the data model behind a selection-style widget, such as a

131

Using Selection Widgets

listbox. This use of Java interfaces is fairly common (e.g., Java/Swing's
model adapters for JTable), and Java is far from the only environment
offering this sort of abstraction (e.g., Flex's XML data-binding framework
accepts XML inlined as static data or retrieved from the Internet).

Android's adapters are responsible for providing the roster of data for a
selection widget plus converting individual elements of data into specific
views to be displayed inside the selection widget. The latter facet of the
adapter system may sound a little odd, but in reality it is not that different
from other GUI toolkits' ways of overriding default display behavior. For
example, in Java/Swing, if you want a JList-backed listbox to actually be a
checklist (where individual rows are a checkbox plus label, and clicks adjust
the state of the checkbox), you inevitably wind up calling setCellRenderer()
to supply your own ListCellRenderer, which in turn converts strings for the
list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter — all you need to do is wrap one of
these around a Java array or java.util.List instance, and you have a fully-
functioning adapter:

String[] items={"this", "is", "a",
"really", "silly", "list"};
new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, items);

One flavor of the ArrayAdapter constructor takes three parameters:

The context to use (typically this will be your activity instance)

+ The resource ID of a view to use (such as a built-in system resource
ID, as shown above)

« The actual array or list of items to show
By default, the ArrayAdapter will invoke tostring() on the objects in the list

and wrap each of those strings in the view designated by the supplied
resource. android.R.layout.simple_list_item_1 simply turns those strings

132

Using Selection Widgets

into Textview objects. Those Textview widgets, in turn, will be shown in the
list or spinner or whatever widget uses this ArrayAdapter. If you want to see
what android.R.layout.simple_list_item_1 looks like, you can find a copy of
it in your SDK installation - just search for simple_list_item_1.xml.

We will see in a later chapter how to subclass an Adapter and override row
creation, to give you greater control over how rows appear.

Lists of Naughty and Nice

The classic listbox widget in Android is known as Listview. Include one of
these in your layout, invoke setAdapter() to supply your data and child
views, and attach a listener via setOnItemSelectedListener() to find out
when the selection has changed. With that, you have a fully-functioning
listbox.

However, if your activity is dominated by a single list, you might well
consider creating your activity as a subclass of ListActivity, rather than the
regular Activity base class. If your main view is just the list, you do not
even need to supply a layout - ListActivity will construct a full-screen list
for you. If you do want to customize the layout, you can, so long as you
identify your Listview as @android:id/list, so ListActivity knows which
widget is the main list for the activity.

For example, here is a layout pulled from the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent" >
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>
<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"

133

Using Selection Widgets

/>
</LinearlLayout>

It is just a list with a label on top to show the current selection.

The Java code to configure the list and connect the list with the label is:

public class ListViewDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items[position]);

}

}

With ListActivity, you can set the list adapter via setListAdapter() - in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To
find out when the list selection changes, override onListItemClick() and
take appropriate steps based on the supplied child view and position (in
this case, updating the label with the text for that position).

The results?

134

Using Selection Widgets

O M@ s5:38 M

amet

consectetuer

Figure 54. The ListViewDemo sample application

The second parameter to our ArrayAdapter -
android.R.layout.simple list_item 1 - controls what the rows look like.
The value used in the preceding example provides the standard Android list
row: big font, lots of padding, white text.

Selection Modes

By default, Listview is set up simply to collect clicks on list entries.
Sometimes, though, you want a list that tracks a user's selection, or possibly
multiple selections. Listview can handle that as well, but it requires a few
changes.

First, you will need to call setChoiceMode() on the Listview in Java code to
set the choice mode, supplying either CHOICE_MODE_SINGLE or
CHOICE_MODE_MULTIPLE as the value. You can get your Listview from a
ListActivity via getListview(). You can also declare this via the
android:choiceMode attribute in your layout XML.

135

Using Selection Widgets

Then, rather than use android.R.layout.simple_list_item_1 as the layout for
the list rows in your ArrayAdapter constructor, you will need to use either
android.R.layout.simple_list _item_single choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample
project:

<?xml version="1.0" encoding="utf-8"?>

<ListView

xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:drawSelectorOnTop="false"
android:choiceMode="multipleChoice"

/>

It is a full-screen Listview, with the android:choiceMode="multipleChoice"
attribute to indicate that we want multiple choice support.

Our activity just uses a standard ArrayAdapter on our list of nonsense words,
but uses android.R.layout.simple list_item_multiple choice as the row
layout:

package com.commonsware.android.checklist;

import android.os.Bundle;

import android.app.ListActivity;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class ChecklistDemo extends ListActivity {
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,

136

Using Selection Widgets

android.R.layout.simple_list_item multiple_choice,
items));

What the user sees is the list of words with checkboxes down the right
edge:

Z Ml @ 11:08am

amet
consectetuer

adipiscing

Figure 55. Multiple-select mode

If we wanted, we could call methods like getCheckedItemPositions() on our
Listview to find out which items the user checked, or setItemChecked() if we
wanted to check (or un-check) a specific entry ourselves.

Spin Control

In Android, the Spinner is the equivalent of the drop-down selector you
might find in other toolkits (e.g., JComboBox in Java/Swing). Pressing the
center button on the D-pad pops up a selection dialog for the user to
choose an item from. You basically get the ability to select from a list

137

Using Selection Widgets

without taking up all the screen space of a Listview, at the cost of an extra
click or screen tap to make a change.

As with Listview, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down
perspective, you need to configure the adapter, not the spinner widget. Use
the setDropDownViewResource() method to supply the resource ID of the view
to use.

For example, culled from the selection/Spinner sample project, here is an
XML layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”
android:layout_width="fill_parent"
android:layout_height="fill _parent"
>
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent"
android:layout_height="wrap_content”
/>
<Spinner android:id="@+id/spinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:drawSelectorOnTop="true"
/>
</LinearlLayout>

This is the same view as shown in the previous section, just with a Spinner
instead of a Listview. The Spinner property android:drawSelectorOnTop
controls whether the arrows are drawn on the selector button on the right
side of the spinner UL

To populate and use the Spinner, we need some Java code:

138

Using Selection Widgets

public class SpinnerDemo extends Activity

implements AdapterView.OnItemSelectedListener {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(this);

ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
android.R.layout.simple_spinner_item,
items);

aa.setDropDownViewResource (
android.R.layout.simple_spinner_dropdown_item);
spin.setAdapter(aa);
}

public void onItemSelected(AdapterView<?> parent,
View v, int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

}

}

Here, we attach the activity itself as the selection listener
(spin.setoOnItemselectedListener(this)). This works because the activity
implements the onItemSelectedListener interface. We configure the adapter
not only with the list of fake words, but also with a specific resource to use
for the drop-down view (via aa.setDropDownviewResource()). Also note the
use of android.R.layout.simple_spinner_item as the built-in view for showing
items in the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.

What we get is:

139

Using Selection Widgets

ChEl & 11:35PM

SpinnerDemo

Figure 56. The SpinnerDemo sample application, as initially launched

ChEl @ 11:35PM

ronsectetuer

Figure 57. The same application, with the spinner drop-down list displayed

140

Using Selection Widgets

Grid Your Lions (Or Something Like That...)

As the name suggests, Gridview gives you a two-dimensional grid of items to
choose from. You have moderate control over the number and size of the
columns; the number of rows is dynamically determined based on the
number of items the supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number
of columns and their sizes:

+ android:numColumns spells out how many columns there are, or, if
you supply a value of auto_fit, Android will compute the number of
columns based on available space and the properties listed below.

+ android:verticalSpacing and android:horizontalSpacing indicate
how much whitespace there should be between items in the grid.

+ android:columnWidth indicates how many pixels wide each column

should be.

+ android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not
taken up by columns or spacing - this should be columnwidth to have
the columns take up available space or spacingWidth to have the
whitespace between columns absorb extra space.

Otherwise, the Gridview works much like any other selection widget - use
setAdapter() to provide the data and child views, invoke
setOnItemSelectedListener() to register a selection listener, etc.

For example, here is an XML layout from the Selection/Grid sample project,
showing a Gridview configuration:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<TextView

android:id="@+id/selection”

141

Using Selection Widgets

android:layout_width="fill_parent"
android:layout_height="wrap_content”
/>
<GridView

android:id="@+id/grid"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:verticalSpacing="40dip"
android:horizontalSpacing="5dip"
android:numColumns="auto_fit"
android:columnWidth="100dip"
android:stretchMode="columnWidth"
android:gravity="center"
/>

</LinearLayout>

For this grid, we take up the entire screen except for what our selection
label requires. The number of columns is computed by Android

(android:numColumns = “auto_fit") based on our horizontal spacing
(android:horizontalSpacing = "5dip") and columns width
(android:columnWidth = "1eedip"), with the columns absorbing any "slop”

width left over (android:stretchMode = "columnWidth").

The Java code to configure the Gridview is:

package com.commonsware.android.grid;

import android.app.Activity;

import android.content.Context;
import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.GridView;
import android.widget.TextView;

public class GridDemo extends Activity

implements AdapterView.OnItemSelectedlListener {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

142

Using Selection Widgets

setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

GridView g=(GridView) findViewById(R.id.grid);
g.setAdapter(new ArrayAdapter<String>(this,
R.layout.cell,
items));
g.setOnItemSelectedListener(this);

}

public void onItemSelected(AdapterView<?> parent, View v,
int position, long id) {
selection.setText (items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

}

}

The grid cells are defined by a separate res/layout/cell.xml file, referenced
in our ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>

<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="14dip"

/>

With the vertical spacing from the XML layout (android:verticalSpacing =
“40dip"), the grid overflows the boundaries of the emulator's screen:

143

Using Selection Widgets

Ml @ 11:55am

consectetuer

lorem ipsun dolor

amet consectetuer

adipiscing morbi

ligula vitae

aliquet mollis

etiam

placerat porttitor

sodales pellentesque augue

Figure 58. The GridDemo sample application, as initially launched

2 Ml & 11:56 am

amet consectetuer

adipiscing morbi

ligula vitae

aliquet mollis

etiam

placerat porttitor

sodales pellentesque augue

purus

Figure 59. The same application, scrolled to the bottom of the grid

144

Using Selection Widgets

Fields: Now With 35% Less Typing!

The AutoCompleteTextview is sort of a hybrid between the EditText (field)
and the spinner. With auto-completion, as the user types, the text is treated
as a prefix filter, comparing the entered text as a prefix against a list of
candidates. Matches are shown in a selection list that folds down from the
field. The user can either type out an entry (e.g., something not in the list)
or choose an entry from the list to be the value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the
standard look-and-feel aspects, such as font face and color.

In addition, AutoCompleteTextView has a android:completionThreshold
property, to indicate the minimum number of characters a user must enter
before the list filtering begins.

You can give AutoCompleteTextview an adapter containing the list of
candidate values via setAdapter(). However, since the user could type
something not in the list, AutoCompleteTextview does not support selection
listeners. Instead, you can register a TextWatcher, like you can with any
EditText, to be notified when the text changes. These events will occur
either because of manual typing or from a selection from the drop-down
list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextview (pulled from the Selection/AutoComplete sample
application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>

145

Using Selection Widgets

<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>
</LinearLayout>

The corresponding Java code is:

package com.commonsware.android.auto;

import android.app.Activity;

import android.os.Bundle;

import android.text.Editable;

import android.text.TextWatcher;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;
import android.widget.TextView;

public class AutoCompleteDemo extends Activity

implements TextWatcher {

private TextView selection;

private AutoCompleteTextView edit;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(this);

edit.setAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_dropdown_item_1line,
items));

}

public void onTextChanged(CharSequence s, int start, int before,
int count) {
selection.setText(edit.getText());
}

public void beforeTextChanged(CharSequence s, int start,
int count, int after) {
// needed for interface, but not used

}

146

Using Selection Widgets

public void afterTextChanged(Editable s) {
// needed for interface, but not used

}

}

This time, our activity implements TextWatcher, which means our callbacks
are onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this
case, we are only interested in the former, and we update the selection label
to match the AutoCompleteTextView's current contents.

Here we have the results:

Chifll & 11:47 PM

AutoCompleteDemo

Figure 60. The AutoCompleteDemo sample application, as initially launched

147

Using Selection Widgets

Al @ 11:47pPM

AutoCompleteDemo
lar

Figure 61. The same application, after a few matching letters were entered,
showing the auto-complete drop-down

& 11:47pPM

AutoCompleteDemo

Figure 62. The same application, after the auto-complete value was selected

148

Using Selection Widgets

Galleries, Give Or Take The Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in
effect, a horizontally-laid-out listbox. One choice follows the next across
the horizontal plane, with the currently-selected item highlighted. On an
Android device, one rotates through the options through the left and right
D-pad buttons.

Compared to the Listview, the Gallery takes up less screen space while still
showing multiple choices at one time (assuming they are short enough).
Compared to the spinner, the Gallery always shows more than one choice at
a time.

The quintessential example use for the Gallery is image preview - given a
collection of photos or icons, the Gallery lets people preview the pictures in
the process of choosing one.

Code-wise, the Gallery works much like a Spinner or Gridview. In your XML
layout, you have a few properties at your disposal:

+ android:spacing controls the number of pixels between entries in
the list

+ android:spinnerselector controls what is used to indicate a selection
- this can either be a reference to a bDrawable (see the resources
chapter) or an RGB value in #AARRGGBB or similar notation

+ android:drawSelectoronTop indicates if the selection bar (or brawable)
should be drawn before (false) or after (true) drawing the selected
child - if you choose true, be sure that your selector has sufficient
transparency to show the child through the selector, otherwise
users will not be able to read the selection

149

CHAPTER 13
Getting Fancy With Lists

The humble Listview is one of the most important widgets in all of
Android, simply because it is used so frequently. Whether choosing a
contact to call or an email message to forward or an ebook to read, Listview
widgets are employed in a wide range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the
limitations of a mobile device's screen, of course. However, making them
fancy takes some work and some features of Android that we will cover in
this chapter.

Getting To First Base

The classic Android Listview is a plain list of text — solid but uninspiring.
This is because all we have handed to the Listview is a bunch of words in an
array, and told Android to use a simple built-in layout for pouring those
words into a list.

However, you can have a list whose rows are made up of icons, or icons and
text, or checkboxes and text, or whatever you want. It is merely a matter of
supplying enough data to the adapter and helping the adapter to create a
richer set of view objects for each row.

151

Getting Fancy With Lists

For example, suppose you want a Listview whose entries are made up of an
icon, followed by some text. You could construct a layout for the row that
looks like this, found in res/layout/row.xml in the FancyLists/Static sample
project:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:orientation="horizontal"

<ImageView
android:id="@+id/icon"
android:padding="2dip"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/ok"

/>

<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="40sp"

/>

</LinearLayout>

This layout uses a LinearLayout to set up a row, with the icon on the left and
the text (in a nice big font) on the right.

By default, though, Android has no idea that you want to use this layout
with your Listview. To make the connection, you need to supply your
Adapter with the resource ID of the custom layout shown above:

public class StaticDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
R.layout.row, R.id.label,

152

Getting Fancy With Lists

items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v,
int position, 1long id) {
selection.setText(items[position]);
}
¥

This follows the general structure for the previous ListView sample.

The key in this example is that you have told ArrayAdapter that you want to
use your custom layout (R.layout.row) and that the Textview where the
word should go is known as R.id.label within that custom layout.
Remember: to reference a layout (row.xml), use R.layout as a prefix on the
base name of the layout XML file (R.1layout.row).

The result is a Listview with icons down the left side. In particular, all the
icons are the same:

LM @ 1:15em

v lorem
v ipsum
v dolor
v sit

v’ amet

v’ consectetuer
v’ adipiscing
v elit

U LT [y
Figure 63. The StaticDemo application

153

Getting Fancy With Lists

A Dynamic Presentation

This technique - supplying an alternate layout to use for rows - handles
simple cases very nicely.

However, what happens when we want the icon to change based on the row
data? For example, perhaps we want to use one icon for small words and a
different icon for large words.

In the case of ArrayAdapter, you will need to extend it, creating your own
custom subclass (e.g., IconicAdapter) that incorporates your business logic.
In particular, it will need to override getview().

The getview() method of an Adapter is what an Adapterview (like Listview or
Spinner) calls when it needs the view associated with a given piece of data
the Adapter is managing. In the case of an ArrayAdapter, getview() is called
as needed for each position in the array - "get me the view for the first row",
"get me the view for the second row", etc.

For example, let us rework the above code to use getview(), so we can have
different icons for different rows - in this case, one icon for short words and
one for long words (from the FancyLists/Dynamic sample project):

public class DynamicDemo extends ListActivity {

TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {

154

Getting Fancy With Lists

selection.setText(items[position]);

}

class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super(DynamicDemo.this, R.layout.row, R.id.label, items);

}

public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

}

else {
icon.setImageResource(R.drawable.ok);
}

return(row);

Our IconicAdapter — an inner class of the activity — has two methods. First,
it has the constructor, which just passes to ArrayAdapter the same data we
used in the ArrayAdapter constructor in StaticDemo. Second, it has our
getview() implementation, which does two things:

1. It chains to the superclass’ implementation of getview(), which
returns to us an instance of our row View, as prepared by
ArrayAdapter. In particular, our word has already been put into the
TextView, since ArrayAdapter does that normally.

2. It finds our Imageview and applies a business rule to set which icon
should be used, referencing one of two drawable resources
(R .drawable.ok and R.drawable. delete).

This gives us:

155

Getting Fancy With Lists

M @ 1:24em

Ed consectetuer
B adipiscing

v elit
™ .

Figure 64. The DynamicDemo application

Inflating Rows Ourselves

The solution shown in this version of the Dynamicbemo works fine. However,
there will be times when ArrayAdapter cannot even be used for setting up
the basics of our row. For example, it is possible to have a Listview where
the rows are materially different, such as category headers interspersed
among "regular” rows. In that case, we may need to do all of the work
ourselves, starting with inflating our rows.

A Sidebar About Inflation

In this case, “inflation” means the act of converting an XML layout
specification into the actual tree of view objects the XML represents. This is
undoubtedly a tedious bit of code: take an element, create an instance of
the specified view class, walk the attributes, convert those into property
setter calls, iterate over all child elements, lather, rinse, repeat.

156

Getting Fancy With Lists

The good news is that the fine folk on the Android team wrapped all that
up into a class called LayoutInflater that we can use ourselves. When it
comes to fancy lists, for example, we will want to inflate views for each row
shown in the list, so we can use the convenient shorthand of the XML
layout to describe what the rows are supposed to look like.

For example, let us look at a slightly different implementation of the
DynamicDemo class, from the FancyLists/DynamicEx project:

public class DynamicDemo extends ListActivity {

TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

}

class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super(DynamicDemo.this, R.layout.row, items);

}

public View getView(int position, View convertView,
ViewGroup parent) {
LayoutInflater inflater=getLayoutInflater();
View row=inflater.inflate(R.layout.row, parent, false);
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(items[position]);
ImageView icon=(ImageView)row.findViewById(R.id.icon);
if (items[position].length()>4) {

icon.setImageResource(R.drawable.delete);

}

else {

157

Getting Fancy With Lists

icon.setImageResource(R.drawable.ok);

}

return(row);
¥
}

}

Here we inflate our R.layout.row layout by use of a LayoutInflater object,
obtained from our Activity via getLayoutInflater(). This gives us a view
object back which, in reality, is our LinearLayout with an Imageview and a
TextView, just as R.layout.row specifies. However, rather than having to
create all those objects ourselves and wire them together, the XML and
LayoutInflater handle the "heavy lifting" for us.

And Now, Back To Our Story

So we have used LayoutInflater to give us a View representing the row. This
row is "empty", since the static layout file has no idea what actual data goes
into the row. It is our job to customize and populate the row as we see fit
before returning it. So, we:

« Fill in the text label into our label widget, using the word at the
supplied position

« See if the word is longer than four characters and, if so, we find our
Imageview icon widget and replace the stock resource with a
different one

The user sees nothing different — we have simply changed how those rows
are being created.

Obviously, this was a fairly contrived example, but you can see where this
technique could be used to customize rows based on any sort of criteria.

158

Getting Fancy With Lists

Better. Stronger. Faster.

The getview() implementation shown in the FancyLists/DynamicEx project
works, but is inefficient. Every time the user scrolls, we have to create a
bunch of new view objects to accommodate the newly-shown rows.

This is bad.

It might be bad for the immediate user experience, if the list appears to be
sluggish. More likely, though, it will be bad due to battery usage — every bit
of CPU that is used eats up the battery. This is compounded by the extra
work the garbage collector needs to do to get rid of all those extra objects
you create. So the less efficient your code, the more quickly the phone's
battery will be drained, and the less happy the user will be.

And you want happy users, right?

So, let us take a look at a few tricks to make your fancy Listview widgets
more efficient.

Using convertView

The getview() method receives, as one of its parameters, a view named, by
convention, convertView. Sometimes, convertview will be null. In those
cases, you have to create a new row Vview from scratch (e.g., via inflation),
just as we did before.

However, if convertview is not null, then it is actually one of your
previously-created view objects! This will happen primarily when the user
scrolls the Listview — as new rows appear, Android will attempt to recycle
the views of the rows that scrolled off the other end of the list, to save you
having to rebuild them from scratch.

Assuming that each of your rows has the same basic structure, you can use
findviewById() to get at the individual widgets that make up your row and

159

Getting Fancy With Lists

change their contents, then return convertview from getview(), rather than
create a whole new row.

For example, here is the getview() implementation from last time, now
optimized via convertview (from the FancyLists/Recycling project):

public class RecyclingDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText (items[position]);

}
class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super(RecyclingDemo.this, R.layout.row, items);

¥
public View getView(int position, View convertView,
ViewGroup parent) {

View row=convertView;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, parent, false);

¥

TextView label=(TextView)row.findViewById(R.id.label);
label.setText(items[position]);

ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

160

Getting Fancy With Lists

}
else {
icon.setImageResource(R.drawable.ok);

}

return(row);
}
}
}

Here, we check to see if the convertview is null and, if so, we then inflate our
row - but if it is not-null, we just reuse it. The work to fill in the contents
(icon image, text) is the same in either case. The advantage is that we avoid
the potentially-expensive inflation step. In fact, according to statistics cited
by Google at the 2010 Google I|O conference, a Listview that uses a
recycling ListAdapter will perform 150% faster than one that does not. In
fact, for complex rows, that might understate the benefit.

Not only is this faster, but it uses much less memory. Each widget or
container - in other words, each subclass of view — holds onto up to 2KB of
data, not counting things like images in Imageview widgets. Each of our
rows, therefore, might be as big as 6KB. For our list of 25 nonsense words,
consuming as much as 150KB for a non-recycling list (25 rows at 6KB each)
would be inefficient but not a huge problem. A list of 1,000 nonsense
words, though, consuming as much as 6MB of RAM, would be a much
bigger issue. Bear in mind that your application may only have 16MB of Java
heap memory to work with. Recycling allows us to handle arbitrary list
lengths with only as much view memory consumed as is needed for the
rows visible on screen.

Note that row recycling is only an issue if we are creating the rows ourself.
If we let ArrayAdapter create the rows, by leveraging its implementation of
getview() as shown in the FancyLists/Dynamic project, then it deals with the
recycling.

Using the Holder Pattern

Another somewhat expensive operation we do a lot with fancy views is call
findviewById(). This dives into our inflated row and pulls out widgets by

161

Getting Fancy With Lists

their assigned identifiers, so we can customize the widget contents (e.g.,
change the text of a Textview, change the icon in an Imageview). Since
findviewById() can find widgets anywhere in the tree of children of the
row's root View, this could take a fair number of instructions to execute,
particularly if we keep having to re-find widgets we had found once before.

In some GUI toolkits, this problem is avoided by having the composite view
objects, like our rows, be declared totally in program code (in this case,
Java). Then, accessing individual widgets is merely the matter of calling a
getter or accessing a field. And you can certainly do that with Android, but
the code gets rather verbose. What would be nice is a way where we can
still use the layout XML yet cache our row's key child widgets so we only
have to find them once.

That's where the holder pattern comes into play, in a class we'll call
ViewHolder.

All view objects have getTag() and setTag() methods. These allow you to
associate an arbitrary object with the widget. What the holder pattern does
is use that "tag" to hold an object that, in turn, holds each of the child
widgets of interest. By attaching that holder to the row view, every time we
use the row, we already have access to the child widgets we care about,
without having to call findviewById() again.

So, let’s take a look at one of these holder classes (taken from the
FancyLists/ViewHolder sample project):

package com.commonsware.android.fancylists.five;

import android.view.View;
import android.widget.ImageView;

class ViewHolder {
ImageView icon=null;

ViewHolder(View base) {
this.icon=(ImageView)base.findViewById(R.id.icon);

}

}

162

Getting Fancy With Lists

viewHolder holds onto the child widgets, initialized via findviewById() in its
constructor. The widgets are simply package-protected data members,
accessible from other classes in this project...such as a VviewHolderDemo
activity. In this case, we are only holding onto one widget - the icon - since
we will let ArrayAdapter handle our label for us.

Using ViewHolder is a matter of creating an instance whenever we inflate a
row and attaching said instance to the row view via setTag(), as shown in
this rewrite of getview(), found in ViewHolderDemo:

public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

if (holder==null) {
holder=new ViewHolder(row);
row.setTag(holder);

}

if (getModel(position).length()>4) {
holder.icon.setImageResource(R.drawable.delete);

}
else {
holder.icon.setImageResource(R.drawable.ok);

}

return(row);

Here, we go back to allowing ArrayAdapter to handle our row inflation and
recycling for us. If the call to getTag() on the row returns null, we know we
need to create a new ViewHolder, which we then attach to the row via
setTag() for later reuse. Then, accessing the child widgets is merely a
matter of accessing the data members on the holder. The first time the
Listview is displayed, all new rows need to be inflated, and we wind up
creating a ViewHolder for each. As the user scrolls, rows get recycled, and we
can reuse their corresponding ViewHolder widget caches.

Using a holder helps performance, but the effect is not as dramatic.
Whereas recycling can give you a 150% performance improvement, adding
in a holder increases the improvement to 175%. Hence, while you may wish
to implement recycling up front when you create your adapter, adding in a

163

Getting Fancy With Lists

holder might be something you deal with later, when you are working
specifically on performance tuning.

In this particular case, we certainly could simplify all of this, by skipping
ViewHolder and using getTag() and setTag() with the Imageview directly. This
example is written as it is to demonstrate how to handle a more complex
scenario, where you might have several widgets that would need to be
cached via the holder pattern.

Interactive Rows

Lists with pretty icons next to them are all fine and well. But, can we create
Listview widgets whose rows contain interactive child widgets instead of
just passive widgets like Textview and Imageview? For example, there is a
RatingBar widget that allows users to assign a rating by clicking on a set of
star icons. Could we combine the RatingBar with text in order to allow
people to scroll a list of, say, songs and rate them right inside the list?

There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad
news is that it is a little tricky, specifically when it comes to taking action
when the interactive widget's state changes (e.g., a value is typed into a
field). We need to store that state somewhere, since our RatingBar widget
will be recycled when the Listview is scrolled. We need to be able to set the
RatingBar state based upon the actual word we are viewing as the RatingBar
is recycled, and we need to save the state when it changes so it can be
restored when this particular row is scrolled back into view.

What makes this interesting is that, by default, the RatingBar has absolutely
no idea what item in the ArrayAdapter it represents. After all, the RatingBar
is just a widget, used in a row of a Listview. We need to teach the rows
which item in the ArrayAdapter they are currently displaying, so when their
RatingBar is checked, they know which item's state to modify.

164

Getting Fancy With Lists

So, let's see how this is done, using the activity in the FancyLists/RatelList
sample project. We will use the same basic classes as our previous demo -
we are showing a list of nonsense words, which you can then rate. In
addition, words given a top rating are put in all caps:

package com.commonsware.android.fancylists.six;

import android.app.Activity;

import android.os.Bundle;

import android.app.ListActivity;
import android.view.View;

import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.RatingBar;
import android.widget.LinearlLayout;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arraylist;

public class RatelListDemo extends ListActivity {
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

ArraylList<RowModel> list=new ArrayList<RowModel>();

for (String s : items) {
list.add(new RowModel(s));
¥

setListAdapter(new RatingAdapter(list));
}

private RowModel getModel(int position) {
return(((RatingAdapter)getListAdapter()).getItem(position));
}

class RatingAdapter extends ArrayAdapter<RowModel> {
RatingAdapter(ArrayList<RowModel> list) {
super(RateListDemo.this, R.layout.row, R.id.label, list);
}

public View getView(int position, View convertView,

165

Getting Fancy With Lists

ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

if (holder==null) {
holder=new ViewHolder(row);
row.setTag(holder);

RatingBar.OnRatingBarChangelListener 1=
new RatingBar.OnRatingBarChangeListener() {
public void onRatingChanged(RatingBar ratingBar,
float rating,
boolean fromTouch) {
Integer myPosition=(Integer)ratingBar.getTag();
RowModel model=getModel(myPosition);

model.rating=rating;

LinearLayout parent=(LinearLayout)ratingBar.getParent();
TextView label=(TextView)parent.findViewById(R.id.label);

label.setText(model.toString());
}
¥

holder.rate.setOnRatingBarChangeListener(1l);
¥

RowModel model=getModel(position);

holder.rate.setTag(new Integer(position));
holder.rate.setRating(model.rating);

return(row);
¥
}

class RowModel {
String label;
float rating=2.0f;

RowModel (String label) {
this.label=1label;

}

public String toString() {
if (rating>=3.0) {
return(label.toUpperCase());
¥

return(label);
)
}
}

166

Getting Fancy With Lists

Here is what is different in this activity and getview() implementation than
before:

1. While we are still using string[] items as the list of nonsense words,
rather than pour that string array straight into an ArrayAdapter, we
turn it into a list of RowModel objects. RowModel is the mutable model:
it holds the nonsense word plus the current checked state. In a real
system, these might be objects populated from a database, and the
properties would have more business meaning.

2. Utility methods like onListItemClick() had to be updated to reflect
the change from a pure-string model to use a RowModel.

3. The ArrayAdapter subclass (RatingAdapter), in getview(), lets
ArrayAdapter inflate and recycle the row, then checks to see if we
have a viewHolder in the row's tag. If not, we create a new ViewHolder
and associate it with the row. For the row's RatingBar, we add an
anonymous onRatingChanged() listener that looks at the row's tag
(getTag()) and converts that into an Integer, representing the
position within the ArrayAdapter that this row is displaying. Using
that, the rating bar can get the actual RowModel for the row and
update the model based upon the new state of the rating bar. It also
updates the text adjacent to the RatingBar when checked to match
the rating bar state.

4. We always make sure that the RatingBar has the proper contents
and has a tag (via setTag()) pointing to the position in the adapter
the row is displaying.

The row layout is very simple: just a RatingBar and a Textview inside a
LinearlLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:orientation="horizontal"
>
<RatingBar
android:id="@+id/rate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:numStars="3"

167

Getting Fancy With Lists

android:stepSize="1"
android:rating="2" />
<TextView

android:id="@+id/label"

android:padding="2dip"

android:textSize="18sp"

android:layout gravity="left|center_vertical"

android:layout_width="fill_parent"

android:layout_height="wrap_content"/>
</LinearLayout>

The viewHolder is similarly simple, just extracting the RatingBar out of the
row View for caching purposes:

package com.commonsware.android.fancylists.six;

import android.view.View;
import android.widget.RatingBar;

class ViewHolder {
RatingBar rate=null;

ViewHolder(View base) {
this.rate=(RatingBar)base.findViewById(R.id.rate);
}
¥

And the result is what you would expect, visually:

168

Getting Fancy With Lists

Al & s:1apPm

RateListDemo

ﬁnﬁr*lorem
T 7 Wripsum
ﬁnﬁr*dolor
¥ 7 W sit

Y Y W amet
¥ Y W consect

etuer

A A A ' . .
Figure 65. The RateListDemo application, as initially launched

This includes the toggled rating bars turning their words into all caps:

£ Ml @ 7:46 Am

RateListDemo

‘L‘.{ﬁ*lorem
T 7 W ipsum
ﬁnﬁr*dolor

Y W sit
Y Y AMET
¥ ¥ W consect

etuer

A A A .
Figure 66. The same application, showing a top-rated word

169

CHAPTER 14

Still More Widgets and
Containers

This book has covered a number of widgets and containers so far. This
chapter is the last that focuses exclusively on widgets and containers,
covering a number of popular options, from date and time widgets to tabs.
After this chapter, we will still introduce the occasional new widget, but in
the context of some other topic, such as introducing the progressBar in the
chapter on threads.

Pick and Choose

With limited-input devices like phones, having widgets and dialogs that are
aware of the type of stuff somebody is supposed to be entering is very
helpful. It minimizes keystrokes and screen taps, plus reduces the chance of
making some sort of error (e.g., entering a letter someplace where only
numbers are expected).

As shown previously, EditText has content-aware flavors for entering in
numbers, phone numbers, etc. Android also supports widgets (DatePicker,
TimePicker) and dialogs (DatePickerDialog, TimePickerDialog) for helping
users enter dates and times.

The DatePicker and DatePickerDialog allow you to set the starting date for
the selection, in the form of a year, month, and day of month value. Note

171

Still More Widgets and Containers

that the month runs from e for January through 11 for December. Most
importantly, both let you provide a callback object (onDatechangedListener
or OnDateSetListener) where you are informed of a new date selected by the
user. It is up to you to store that date someplace, particularly if you are
using the dialog, since there is no other way for you to get at the chosen
date later on.

Similarly, TimePicker and TimePickerDialog let you:

set the initial time the user can adjust, in the form of an hour (e
through 23) and a minute (e through 59)

indicate if the selection should be in 12-hour mode with an AM/PM
toggle, or in 24-hour mode (what in the US is thought of as
"military time" and much of the rest of the world is thought of as
"the way times are supposed to be")

provide a callback object (onTimeChangedListener or
onTimeSetListener) to be notified of when the user has chosen a new
time, which is supplied to you in the form of an hour and minute

For example, from the Fancy/Chrono sample project, here's a trivial layout
containing a label and two buttons - the buttons will pop up the dialog
flavors of the date and time pickers:

>

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”

<TextView android:id="@+id/dateAndTime"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>

<Button android:id="@+id/dateBtn"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Set the Date"
android:onClick="chooseDate"
/>

<Button android:id="@+id/timeBtn"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

172

Still More Widgets and Containers

android:text="Set the Time"
android:onClick="chooseTime"
/>

</LinearlLayout>

The more interesting stuff comes in the Java source:

package com.commonsware.android.chrono;

import android.app.Activity;

import android.os.Bundle;

import android.app.DatePickerDialog;
import android.app.TimePickerDialog;
import android.view.View;

import android.widget.DatePicker;
import android.widget.TimePicker;
import android.widget.TextView;
import java.text.DateFormat;

import java.util.Calendar;

public class ChronoDemo extends Activity {
DateFormat fmtDateAndTime=DateFormat.getDateTimeInstance();
TextView dateAndTimelLabel;
Calendar dateAndTime=Calendar.getInstance();

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);

updatelLabel();
}

public void chooseDate(View v) {
new DatePickerDialog(ChronoDemo.this, d,
dateAndTime.get(Calendar.YEAR),
dateAndTime.get(Calendar .MONTH),
dateAndTime.get(Calendar.DAY_OF_MONTH))
.show();

}

public void chooseTime(View v) {
new TimePickerDialog(ChronoDemo.this, t,
dateAndTime.get(Calendar.HOUR_OF_DAY),
dateAndTime.get(Calendar .MINUTE),
true)
.show();

}

private void updateLabel() {
dateAndTimeLabel.setText (fmtDateAndTime

173

Still More Widgets and Containers

.format (dateAndTime.getTime()));
}

DatePickerDialog.OnDateSetListener d=new DatePickerDialog.OnDateSetListener()
{
public void onDateSet(DatePicker view, int year, int monthOfYear,
int dayOfMonth) {
dateAndTime.set(Calendar.YEAR, year);
dateAndTime.set(Calendar.MONTH, monthOfYear);
dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
updatelLabel();
¥
s

TimePickerDialog.OnTimeSetListener t=new TimePickerDialog.OnTimeSetListener()
{
public void onTimeSet(TimePicker view, int hourOfDay,
int minute) {
dateAndTime.set(Calendar.HOUR_OF_DAY, hourOfDay);
dateAndTime.set(Calendar.MINUTE, minute);
updatelLabel();
}
s
¥

The "model" for this activity is just a Calendar instance, initially set to be the
current date and time. We pour it into the view via a DateFormat formatter.
In the updateLabel() method, we take the current calendar, format it, and
put it in the Textview.

Each button has a corresponding method that will get control when the
user clicks it (chooseDate() and chooseTime()). When the button is clicked,
either a DatePickerDialog or a TimePickerDialog is shown. In the case of the
DatePickerDialog, we give it a OnDateSetListener callback that updates the
Calendar with the new date (year, month, day of month). We also give the
dialog the last-selected date, getting the values out of the calendar. In the
case of the TimePickerDialog, it gets a OnTimeSetListener callback to update
the time portion of the calendar, the last-selected time, and a true
indicating we want 24-hour mode on the time selector.

With all this wired together, the resulting activity looks like this:

174

Still More Widgets and Containers

EhMl & &:50PMm

ChronoDemo

Set the Date
Set the Time

Figure 67. The ChronoDemo sample application, as initially launched

EhMl & &:51pPm

